
CS/TR-89-36.1

Revolution 89

or

‘‘Distributing UNIX Brings it Back to its Original Virtues’’

François Armand, Michel Gien, Frédéric Herrmann, Marc Rozier

Chorus systèmes
6, avenue Gustave Eiffel, F−78182, Saint-Quentin-en-Yvelines (France)
Tel: +33 1 30 64 82 00, Fax: +33 1 30 57 00 66, E-mail: mg@chorus.fr

1. Introduction
The need to handle distributed computing in a general manner leads us to structure our operating systems
functions in a much more modular way than it is done in today’s systems such as current UNIX kernels,
and to provide facilities for dynamic reconfiguration so the system can be adapted to the variety of
configurations needed in a distributed system. When applied to the UNIX kernel, such a "restructuring"
leads to same kind of "revolution" that UNIX performed on the operating systems of the 70’s, i.e., to
extract from the operating system all functions that can better be performed outside, and to leave in the
kernel only those generic services that are necessary to provide higher level services, such as high level
file access methods, command languages (shell) or system administration functions.

The CHORUS1 architecture is designed to support new generations of open, distributed, scalable operating
systems. It allows the integration of various families of operating systems, ranging from small real-time
systems to general-purpose operating systems, in a single distributed environment.

The CHORUS architecture is based on a minimal real-time Nucleus that integrates distributed processing
and communication at the lowest level. CHORUS operating systems are built as sets of independent sys-
tem servers, that rely on the basic, generic services provided by the Nucleus i.e., thread scheduling, net-
work transparent IPC, virtual memory management and real-time event handling.

The CHORUS Nucleus itself can be scaled to exploit a wide range of hardware configurations, such as
embedded boards, multi-processor and multi-computer configurations, networked workstations and dedi-
cated servers.

Operating systems (called Subsystems) implemented on top of this Nucleus currently include a UNIX2

SYSTEM V[Herr88] and the "Emeraude"[Mino88] CASE/PCTE system. Work is currently in progress to
implement Object-Oriented distributed Subsystems.[Alve88]

CHORUS−V3 is the current version of the CHORUS system developed by Chorus systèmes. Earlier versions
were designed and implemented within the Chorus research project at INRIA between 1979 and 1986.
Related work includes the V-system[Cher88] for the message-passing kernel, Mach[Rash87] and[Li86] for the
distributed virtual memory, Topaz[McJo88] and Mach[Acce86] for the ‘‘threads’’, Amoeba[Mull87] for the
global addressing, and the Bell Laboratories’9th Edition UNIX[Pres86, Wein86] for the uniform file naming.

�����������������������������������
1. CHORUS is a registered trademark of Chorus systèmes

2. UNIX is a registered trademark of AT&T

In: Proceedings of "Workshop on Experiences with Building Distributed (and Multiprocessor) Systems", 5-6 Oct.
1989, Ft. Lauderdale, FL, USA, pp.153-174.

 Chorus systèmes, 1990 − 1 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

CHORUS−V3 is written in C++ (and C). It currently supports 680X0 and 80386 based machines, with
implementations on networked workstations and servers, as well as multi-processor configurations.

This paper outlines the architecture and implementation of UNIX kernel functions in terms of the CHORUS

architecture concepts, based on the CHORUS Nucleus basic services. It focuses on the experiences drawn
from it, the resulting benefits for users as well as for systems designers and maintainers, and the issues
that still need to be considered.

The next section summarizes the CHORUS Nucleus’ basic abstractions and services as described exten-
sively in. [Rozi88] Section 3 outlines the structure of a UNIX Subsystem, in terms of independent cooperat-
ing CHORUS servers, illustrating how one can make use of the Nucleus facilities in a UNIX context.
Straightforward extensions in the services provided at the UNIX kernel interface level will also be
presented. The remaining sections give examples of using the CHORUS architecture in typical system
configurations and operating system experiments.

2. The CHORUS Architecture
2.1 Overall Organization

A CHORUS System is composed of a small-sized Nucleus and a number of System Servers. Those
servers cooperate in the context of Subsystems (e.g., UNIX) to provide a coherent set of services and
interfaces to their ‘‘users’’ (Figure 1).

P1 P2 R2Q2Q1

Subsystem 1 Subsystem 2

CHORUS Nucleus

Subsystem 2 InterfaceSubsystem 1 Interface

CHORUS Nucleus Interface

Lib.Lib.Lib.LibraryLib.

Application Programs

Generic Nucleus

Libraries

&

System Servers

. .

. .

Figure 1. − The CHORUS Architecture

The CHORUS Nucleus (Figure 2) plays a double role:

1. Local services:
It manages, at the lowest level, the local physical computing resources of a ‘‘computer’’, called a
site by means of three clearly identified components:
� allocation of local processor(s) is controlled by a real-time multi-tasking executive. This execu-

tive provides fine grain synchronization and priority-based preemptive scheduling,
� local memory is managed by a virtual memory manager,
� external events − interrupts, traps, exceptions − are dispatched by a supervisor.

2. Global services:
An IPC Manager provides the communication service, delivering messages regardless of the loca-
tion of their destination within a CHORUS distributed system. It may rely on external system servers

 Chorus systèmes, 1990 − 2 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

(i.e.,
Network Managers) to operate all kinds of network protocols.

(Portable)
Real-time Executive

(Portable)
Communication (IPC)

(Machine dependent)
Supervisor

(Portable)
Virtual Memory

dependent)
(Machine-

Hardware
...... .

.....

Figure 2. − The CHORUS Nucleus

2.2 The CHORUS Nucleus basic abstractions

The physical support for a CHORUS system is composed of a set of sites (‘‘computers’’, or ‘‘boards’’),
interconnected by a communication network (i.e., a real network or a bus). A site is a tightly coupled
grouping of physical resources: one or more processors, memory, and attached I/O devices. There is one
CHORUS Nucleus per site.

The actor is the logical unit of distribution and of collection of resources in a CHORUS system. An actor
defines a protected address space supporting the execution of one or more threads (lightweight processes)
that share the address space of the actor. An address space is split into a user address space and a system
address space. On a given site, each actor’s system address space is identical and its access is restricted
to privileged levels of execution (Figure 3).

address space
System

address spaces
User

Actor 1

p+1

n

Actor 2
Actor i

p

0

Figure 3. − Actor Address Spaces

Any given actor is tied to a site, and its threads are executed on that site. A given site may support many
simultaneous actors. Since each has its own ‘‘user’’ address space, actors define protected virtual
machines.

 Chorus systèmes, 1990 − 3 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

The thread is the unit of execution in a CHORUS system and is characterized by a context corresponding
to the state of the processor (registers, program counter, stack pointer, privilege level, etc.). A thread is
always tied to one and only one actor. These threads share the resources of that actor and no other actor.
Threads are scheduled by the Nucleus as independent entities. In particular, threads of an actor may run
in parallel on the many processors of a multiprocessor site. The scheduling of threads is preemptive,
based on their fixed priorities.

Besides the shared memory provided by the actor address space, CHORUS offers message-based facilities
(referred to as IPC) which allow any thread to communicate and synchronize with any other thread, on
any site. The CHORUS IPC permits threads to exchange messages either asynchronously or by
demand/response, also called Remote Procedure Call (RPC). Its main characteristic is its transparency
with respect to the location of threads: the communication interface is uniform, regardless of whether it is
between threads in a single actor, between threads in different actors on the same site, or between threads
in different actors on different sites.

A message is composed of a (optional) message body and a (optional) message annex. Both are untyped
string of bytes. Message passing is tightly coupled with the virtual memory mechanism to enable data
transmission without copy.

Messages are not addressed directly to threads, but to intermediate entities called ports (Figure 4).

A port is an address to which messages can be sent, and a queue holding the messages received but not
yet consumed by the threads. A port can only be attached to a single actor at a time, but can be attached
to different actors successively, effectively migrating the port from one actor to another.

Actor

Thread

Port

Message

Site

Figure 4. − CHORUS Nucleus basic abstractions

The notion of a port provides the basis for dynamic reconfiguration: this extra level of indirection
between communicating threads, enables a given service to be supplied independently of a given actor.
The servicing actor can be changed at any time, by changing the attachment of the port from the actor
holding the initial thread to the actor holding the new one.

A group of ports connects those ports to a multicast facility: it allows one thread to communicate directly
with an entire group of threads (via a group of ports); it provides also ‘‘functional’’ access to a service by
selecting a server from a group of (equivalent) servers. A group is built by dynamically inserting ports
into, and removing them from, the group.

Ports are globally designated with Unique Identifiers (UI’s). A UI is unique in a CHORUS system. The
CHORUS Nucleus implements a localization service, allowing threads to use these names without any
knowledge of the location of the designated entities. UI’s may be freely exchanged between actors.

Global names for other types of objects are based on UI’s, but hold more information, such as protection
information. These names are called capabilities. [Tane86] A capability is made of a UI and an additional
structure, the key. When objects are Nucleus objects (e.g., actors), the UI is the global name for the
object, and the key is only a protection key. When an object is managed by an external server (e.g.,
memory segments), the UI is the global name of a port of that server, and the semantics of the key are
defined by the server. Generally, the key identifies the object within the server and holds the protection

 Chorus systèmes, 1990 − 4 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

information.
As with UI’s, capabilities may be freely exchanged between actors.

2.3 Virtual Memory Management

The CHORUS memory management service[Abro89, Abro89a] provides separate address spaces (if the
hardware gives adequate support), associated to actors, called contexts, and efficient and versatile
mechanisms for data transfer between contexts, and between secondary storage and a context. The
mechanisms are adapted to various needs, such as IPC, file read/write or mapping, memory sharing
between contexts, and context duplication.

CHORUS memory management considers the data of a context to be a set of non-overlapping regions,
which form the valid portions of the context.

Regions are mapped (generally) to secondary storage objects, called segments. Segments are managed
outside of the Nucleus, by external servers called segment mappers. These manage the implementation
of the segments, as well as the protection and naming of segments.

2.4 The Supervisor

The CHORUS Nucleus offers the following basic services to allow system actors to handle hardware
events such as interrupts, traps and exceptions:

System threads may connect handlers (e.g., routines in the address space of their actor) to hardware inter-
rupts. When an interrupt occurs, these handlers are executed. Several handlers may be simultaneously
connected to the same interrupt, with control mechanisms to order or stop their invocation. After ack-
nowledging the interrupt, handlers can communicate with other threads using asynchronous IPC or syn-
chronization primitives provided by the Nucleus.

System actors may also connect routines to trap invocations, either as one routine or as an array of rou-
tines. In the latter case, the handler actually invoked is specified by a "service" number stored in a register
of the machine.

Finally, an exception port or an exception routine can be associated with an actor, thus permitting Subsys-
tem actors to deal with faults occurring within other actors.

TABLE 1. − Supervisor Interface

� �� ���

Supervisor interface
� ���

svConnect Connect an interrupt or trap handler
svDisConnect Disconnect an interrupt or trap handler
svCallConnect Connect a trap handling table
svCallDisConnect Disconnect a trap handling table

� �� ���
	
	
	
	
	
	
	
	
	

		
	
	
	
	
	

	
	
	
	
	
	
	
	
	

3. The UNIX Sub-System
3.1 Overall structure

UNIX facilities may logically be partitioned into several classes of services according to the different
types of resources managed: processes, files, devices, pipes, sockets. The design of the structure of the
UNIX Subsystem in CHORUS puts emphasis on a clean definition of the interactions between these dif-
ferent classes of services in order to provide a true modular structure.

The UNIX Subsystem has been implemented as a set of System Servers, running on top of the CHORUS
Nucleus. Each type of system resource (process, file, etc.) is isolated and managed by a dedicated system
server. Interactions between these servers are based on the CHORUS IPC which enforces clean interface
definitions (Figure 5).

 Chorus systèmes, 1990 − 5 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

UNIX process

UNIX process

UNIX process

UNIX process

UNIX process

UNIX process

UNIX process

UNIX process

UNIX InterfaceUNIX InterfaceUNIX Interface

Network (or Communication Bus)

Nucleus Nucleus Nucleus

Nucleus Interface Nucleus Interface Nucleus Interface

Device
Manager

Process
Manager

FileDevice
Manager

Manager
Process

Process
Manager

Manager.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Figure 5. − UNIX as a Set of Independent Servers

Several types of servers may be distinguished within a typical UNIX Subsystem:

− The Process Manager (PM)
The Process Manager (PM) executes services directly related to UNIX process management (creation
and destruction of processes, signals, etc.). The UNIX services have been extended to provide tran-
sparent access to distributed resources, so the PM’s on the different sites of a network cooperate to pro-
vide remote services (such as remote kill or remote exec).
The PM manages the system context of each process. When the PM is not able to serve a UNIX system
call by itself, it calls other servers as appropriate.

− The File Manager (FM)
The File Manager (FM) performs file management services. The current version is compatible with
SYSTEM V.2 services and physical disk layout. New versions, compatible with SYSTEM V.3.2 and
BSD 4.3 respectively are currently being integrated into CHORUS.
The FM also acts as a CHORUS external mapper for distributed virtual memory management by per-
forming the page_in/page_out requests issued by the CHORUS Nucleus Virtual Memory
Manager.

− The Device Managers (DM)
The Device Managers (DM) manage asynchronous lines, bit-map displays, pseudo-ttys, etc. and imple-
ment the UNIX line disciplines. Several DMs can run simultaneously on one site servicing different
peripheral devices.

− The Pipe Manager (PIM)
A Pipe Manager implements UNIX pipe management and synchronization. Open requests for named
pipes, received by File Managers are forwarded to a Pipe Manager. Pipe Managers may be active on
every site, thus reducing network traffic when pipes are invoked on diskless stations.

− The Socket Manager (SM)
The Socket Manager implements BSD 4.3 socket services, providing access to TCP/IP protocols.

 Chorus systèmes, 1990 − 6 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

Those system servers can run either in User space or in System space. Those needing to connect some of
their routines to traps (like the PM) or to execute privileged instructions (like I/O operations) run in sys-
tem space. Loading a server in system space also has some impact on the performance of the server as it
avoids extra memory context switches when the server is invoked.

3.2 Functional extensions

The interface offered by the UNIX Subsystem on a given machine, can be made binary compatible (i.e., at
the executable code level) with a standard UNIX system taken as a reference (currently System V Release
3.2 on AT/386), to ensure complete user software portability. In addition, UNIX drivers can be integrated
into a CHORUS Server with minimum effort.

CHORUS also provides extensions to the UNIX interface to take benefit of the distributed nature of the sys-
tem and of the underlying CHORUS Nucleus services.

3.2.1 File System extensions

The naming facilities provided by the UNIX file system have been extended, to permit the designation of
services accessed via Ports.

Symbolic Port Names (new UNIX file type) can be created in the UNIX file tree (Table 2). They associate
a file name to a port Unique Identifier (this is very similar to UNIX device designation). When such a
name is found during the analysis of a pathname, the corresponding request is forwarded to the port −
marked with the current status of the analysis.

TABLE 2. − UNIX Symbolic Port System Calls

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Symbolic Port System Calls
� ���

symport create a symbolic port
readport get the Unique Identifier associated with the symbolic port
lstat do stat(2) on the symbolic port itself
unlink unlink the symbolic port itself

� �� ���

User written servers as well as system servers can be designated by such symbolic port names, thus
allowing "users" to make extensions to the system dynamically (see Section 4.5). In particular, this is
used to interconnect file systems and provide a global name space. For example, in Figure 6, ‘‘pipo’’ and
‘‘piano’’ are symbolic port names.

[piano]

/

usr bin fs

piano pipo

[pipo]

/

fs

piano pipo

bin usr

chorus

Figure 6. − Interconnection of File Trees

3.2.2 Process Management extensions

These extensions have been introduced to traditional UNIX services:

 Chorus systèmes, 1990 − 7 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

� The basic extension to process management is to enable remote creation (fork(2)) or execution
(exec(2)) of processes. A "creation site" information has been added to the system context of UNIX
processes. This information is inherited through fork(2) and exec(2). It may be set by means of a
new system call: csite (SiteId). This information is used when a process is forking or exec’ing:
on a fork(2), the child process will be created on the site specified by SiteId. On exec(2), the
process will start the execution of the new program on the site specified by SiteId.

Creating or moving processes on any site, implies that process identifiers are unique over the distributed
system. Process identifiers used by UNIX servers are 32 bits long. UNIX processes can manipulate either
PIDs of 16 bits (for binary compatibility reasons) or 32 bits which will allow them to address signals to
remote processes. The new pcntl (LONGPID) system call sets a system context flag which enables a
process to manipulate PIDs 32 bits long.

� At exec(2) time, processes can be dynamically loaded into the system space, provided that the text
and data regions that they need are free. Such a process will execute at a privileged level, thus being
able to execute I/O instructions.

� Processes can lower or raise their priority, thus allowing real-time applications to run on the UNIX
Subsystem (see 4.4).

3.2.3 Other extensions

It is natural to provide UNIX processes with access to some of the services offered by the CHORUS

Nucleus i.e., IPC, Virtual Memory and Threads. Such access is not provided by directly invoking the
Nucleus but rather through the UNIX Process Manager, in order to eliminate inconsistencies. For exam-
ple, if a UNIX process could create a thread by directly invoking the CHORUS Nucleus without the Process
Manager knowing about it, this thread would not be able to issue UNIX system calls correctly.

Therefore, some CHORUS Nucleus services are not available at the UNIX Subsystem interface (e.g., no
actor creation or deletion primitives), and some restrictions and controls are performed: e.g., forbid the
creation of threads inside other UNIX processes and the use of the UNIX process identifier instead of the
CHORUS actor Unique Identifier in calls such as portMigrate.

To clearly distinguish between the two levels of interfaces, UNIX primitives allowing access to CHORUS

services have been prefixed by "u_" (e.g., u_portCreate instead of portCreate).

3.2.3.1 Virtual Memory services

UNIX processes can use the Virtual Memory services of the CHORUS Nucleus to create regions, map seg-
ments within a region, share regions, etc. They can thus gain access to the physical memory (e.g., for
mapping bitmap memory).

3.2.3.2 Inter Process Communication

UNIX processes can create ports, insert ports into groups, and send and receive messages. They can
migrate ports from one process to another. CHORUS IPC mechanisms allow them to communicate tran-
sparently over the network. Applications can therefore be tested on a single machine, and then distributed
throughout the network, without any modification necessary to adapt to a new configuration. Using port
migration or group facilities provides a sound basis for doing dynamic reconfiguration and developing
fault-tolerant applications.

3.2.3.3 Multi-threaded UNIX Processes

Multiprogramming within a UNIX process is possible with u_threads. A u_thread can be considered as a
lightweight process within a standard UNIX process. It shares all the process resources and in particular
its virtual address space and open files. Each u-thread represents a different locus of control.

When a process is created by fork(2), it starts running with a unique u_thread; the same situation
occurs after exec(2); when a process terminates by exit(2), all u_threads of that process terminate
with it.

A set of signal handlers is associated with each u_thread. Signal sent on an exception are delivered to the
faulty u_thread (only); alarm signals are delivered to the u_thread which set the alarm; all other signals
are broadcasted to all u_threads of the process. Signal handlers are executed on the stack of the u_thread

 Chorus systèmes, 1990 − 8 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

which
set the signal handler. Thus full consistency with existing signal handlers is maintained. U_threads may
issue UNIX system calls. For reasons of simplicity (i.e., efficiently insuring consistency of the process
system context), these are serialized except blocking system calls such as read(2), write(2),
pause(2), wait(2), u_ipcReceive(2) and u_ipcCall(2) (i.e., those interruptible by sig-
nals).

3.3 Implementation

3.3.1 Structure of a UNIX Process

A UNIX process can be viewed as one thread of control executing within one address space. Therefore
each UNIX process is implemented as one CHORUS actor. Its UNIX system context is managed by the
Process Manager. The actor address space is divided into memory regions for text, data and execution
stacks.

In addition, the Process Manager attaches one control port and one control thread to each actor imple-
menting a UNIX process. The control port and the control thread are not visible to the user of that process.

Control threads executing within process contexts share the process address space and can easily access
and modify the core image of the process (e.g., stack manipulations on the reception of a signal, text and
data access during debugging). They are also ready to handle asynchronous events received by the pro-
cess (mainly signals). These events are implemented as CHORUS messages received on the control port
(Figure 7).

Control Port

System Mode

User Mode

thread
Control

u_thread2u_thread1

Proc

u_thread2u_thread1

UNIX TRAP

Signals...

Figure 7. − UNIX Process as a CHORUS Actor

Because a process can be multi-threaded, the UNIX system context attached to one process has been split
into two system contexts: one process context (Proc) and one u_thread context (u_thread).

Most services implemented outside of Process Managers are file related services. However, the file con-
text of a Process (e.g., current and root directories, open files, umask and ulimit informations) are
kept in the Proc structure, held by the Process Manager. This implies a specific protocol between PM’s
and other servers, as shortly outlined in Section 3.3.4.

Both system contexts Proc and u_thread are maintained by the Process Manager of the current pro-
cess execution site. These contexts are accessed neither by the CHORUS Nucleus nor by other system
servers. On the other hand the UNIX Subsystem is unable to see the internal Nucleus structures associ-
ated with actors and threads, the only way to access them is through Nucleus system calls (this is

 Chorus systèmes, 1990 − 9 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

essential
for allowing multiple Subsystems to co-reside on top of the same CHORUS Nucleus).

3.3.2 Process environment known by its set of ports

The semantics associated with ports by the CHORUS Nucleus − unique and global naming, addressing by
IPC with location transparency − makes them extremely useful for designating system entities. The main
advantages of using ports are the indirection that they provide between the process and its environment,
and the robustness against the evolution of configurations. Port names stored in the process context are
always valid whether the process itself migrates to another site (i.e., exec to a remote site) or if some of
the entities to which they are related to migrate.

Used directly or embedded within capabilities, ports constitute the main part of a process environment.
Embedded in capabilities, ports are used to designate process resources: e.g., open files or segments
mapped into the process address space (text, data). But ports are also used directly to address
processes.

Resources and capabilities

Every resource (managed by a Server) used by a process is designated internally by a capability: open
file, open pipe, open device, current and root directories, text and data segments, etc. Such capabilities
may be used to create regions in virtual memory; thus their structure is the one exported by the CHORUS

Nucleus.

For example, opening a file associates the capability sent back by the appropriate server to the correct file
descriptor. The capability is built with the port of the server that manages that file and the reference of the
open file within the server. All requests on that open file (e.g., seek(2), close(2)) are translated
directly into a message and sent directly to the appropriate server.

Because the server of a resource is designated by a port, and because the localization of a port is tran-
sparent as part of the CHORUS IPC, the UNIX Subsystem does not have to locate UNIX servers.

Capabilities are computed and sent back by the servers. A server can thus delegate a service to another
server, without clients knowing which actual server serves its requests.

3.3.3 The Process Manager

All of the UNIX Subsystem code concerning process management, signal handling, and the interface for
the system calls accessible from a process, are in a single actor: the Process Manager (PM).

This actor is loaded when booting the system. Its code and data areas are initialized in the system
memory space. The presence of a PM inside the system area makes it possible to implement system calls
by using traps, as in UNIX (u_threads are running PM code after each system call), thus allowing
binary compatibility with other UNIX systems.

The PM actor has the following resources:

− A port for receiving RPC requests addressed to the PM (remote kill and exec). This port is
inserted in the static group of PM ports, used for locating a process.

− A thread dedicated to processing requests received on that port.

− A thread used for managing alarms. That thread is woken up each time an alarm arises and it sends a
message to the control port of the actor that owns the u_thread which set the alarm.

− The data area of the actor. It includes, in particular, the Proc and the u_thread structures.

− A scratch area used to send and receive messages or to access stack areas of user processes (e.g., for
mapping/demapping operations).

− The code area of the actor. Located in the system memory space, it is shared by all processes and exe-
cuted by PM threads when processing remote requests and handling alarms, by u_threads when doing a
system call, or by control threads (one per process) upon receipt of asynchronous messages addressed
to processes (e.g., signals, children, death).

 Chorus systèmes, 1990 − 10 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

3.3.4 The File Manager

The FM is a system actor that has two ports on which it receives request messages. One of these ports
deals exclusively with messages for paging virtual memory. The other port receives all other requests:
UNIX services, cooperation messages between PM and the FM, between Device Managers (DM) and the
FM, and between the FM and other FMs in a distributed system. This port is called the "UNIX port"of the
FM.

Once the initialization phase is over, several threads execute inside the FM. These threads process mes-
sages from one or the other of the two ports (Figure 8).

File Manager

Context 4Context 3Context 2Context 1

Paging Port

UNIX Port

Figure 8. − File Manager Dynamic Structure

The general execution scheme for these threads is:
1. wait for a message to process,
2. initialize the thread context from the contents of the message,
3. invoke the required service,
4. prepare the reply message, and send it to the original requester,
5. return to (1).

The FM contains state information similar to that of a traditional UNIX file system. It owns and manages
the following structures:
− A table of open files (one entry per open(2) performed), that contains in particular the flags used

when opening the file (read and/or write access, etc.) and the current position in the file.
− A table of inodes, containing the memory images of the disk descriptors for the files currently in use.
− A table of the mounted volumes containing the volume descriptors of the disks currently mounted.
− A cache of the disk blocks, allowing the FM to minimize the number of physical disk accesses.

In addition, each thread that processes requests has an associated process context structure that simulates
the system context that would be present in a traditional UNIX kernel (i.e., the U area). This context con-
tains, for example, the identification of the user on whose behalf the thread is performing the request, the
parameters of the request, and the global scratch variables equivalent to those of a UNIX kernel file sys-
tem.

Because the context of the process on whose behalf the FM is processing the request, is not directly
accessible to the FM, context information needed to serve the requests are included into the request mes-
sages, together with the system call parameters. The server includes in the replies those information

 Chorus systèmes, 1990 − 11 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

necessary
to update the file context of the process. Such a scheme is illustrated in Figure 8. Other servers such as
Pipe, Device, or Socket Managers operate under a similar scheme.

Execution
Context

Open
File

Table

Table
of

Inodes

Mounted

Volumes

Disk Cache

File Manager

File
Context

Paging
Port

UNIX Port

System Context

User Process

Figure 9. − Process and File Manager File Context

4. UNIX brought back to its original virtues
4.1 A tool-kit system

The structure of the UNIX Subsystem of CHORUS brings back to UNIX some of its original characteristics
which have been gradually worn away by the thousands of hacker×years spent introducing new features
into a monolithic kernel. The same ideas that UNIX had been promoting regarding the development of
software tools have been applied by CHORUS to the operating system itself. They can be summarized as:
− make system servers implement only one type of service very simply and efficiently, rather than a lot

of complicated features inefficiently,
− adapt existing servers rather than redoing everything from scratch, and fill the gaps by developing only

those servers which are missing, when you want to build a new operating system (or extend an existing
one).

Some of the servers in the UNIX Subsystem have been written from scratch (e.g., Process Manager,
Socket Manager), while others have been adapted from existing UNIX kernel code (e.g., File Manager,
Device Manager). In both cases the interdependencies and functions of each of the servers have been
carefully designed, so that they can be combined in various ways to adapt the behavior of the resulting
system to its user’s needs. The servers have been made as flexible as possible so that they can be

 Chorus systèmes, 1990 − 12 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

dynamically
configured.

Some of the areas which most benefit from such a design and which will be examined in the following
sections are:
− the static configuration of a distributed system,
− the dynamic (re)configuration of a distributed system,
− the ability to change the system behavior,
− the configuration of the system interface and semantics.

Most of these capabilities come from the basic services provided by the CHORUS Nucleus, but also from
the way these services are used by the upper layers of the system.

4.2 Modularity, static configuration and distribution

As the UNIX subsystem is composed of a collection of servers, it is straightforward to adapt it to the
hardware configuration of the system, or to the needs of the applications which run on such a
configuration:
‘‘No disk on your machine?’’... ‘‘Don’t take the File Manager’’...
‘‘No Terminal connected to your embedded system?’’... ‘‘Don’t load the Device Manager’’...
‘‘Your application uses sockets but no pipes?’’... ‘‘Take the Socket Manager, but not the Pipe
Manager’’...
This is possible because these servers are truly independent from one another and because their only
interface to their clients is through the CHORUS IPC.

4.2.1 Typical configurations

4.2.1.1 Standalone Machines

On a standalone machine, obviously, there is no need of network protocols, so the Network Manager
need not to be part of the system.

4.2.1.2 Diskless Workstations

On a diskless workstation, there is no need of a File Manager. Only a Nucleus, a Network Manager, a
Process Manager, a Device Manager (to support a bitmap and pseudo-ttys) and possibly a Socket
Manager are required to provide a full UNIX environment. UNIX file system calls are converted into IPC
requests by the PM, thus allowing transparent access to File Managers running on remote disk servers.

The Pipe Manager resides on the diskless workstation, but this is not mandatory. If it is not there, another
equivalent server in the distributed system will serve the pipe requests of that station. Loading it on the
station itself only provides better response time for accessing pipes, because it avoids accessing the net-
work.

4.2.1.3 Multi-computers

From the point of view of a distributed system like CHORUS, the structure of a multi-computer (e.g., a
hypercube) is very similar to the structure of a network of servers and workstations. The same
configuration choices can be made: loading drivers only on the nodes where they are useful, loading a
Socket Manager on the nodes providing connections with the outside world, loading a File Manager
where disks are located. Only a Nucleus, a Network Manager and a Process Manager need to be present
on each node to make that node look like a full UNIX system to application programs (on nodes running
only one process of the application, this can actually be reduced to a simpler run-time system).

In fact, the version of the Network Manager running on a node not connected to an external network need
not implement all the network protocols but only those handling inter-node communication. Network
Managers running on nodes that provide access to an external network, must provide both families of
protocols. This system architecture is being used on the EuroWorkStation developed in the EWS Esprit II
Project 2569.

4.2.1.4 Multi-processors

The CHORUS kernel can run on symmetric multi-processor machines, providing its actors with uniform
and simultaneous access to the processors.

 Chorus systèmes, 1990 − 13 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

The modularity of the UNIX subsystem allows benefiting directly from this facility: because UNIX ser-
vices are implemented as independent servers, no synchronization is required between these servers.
Thus, on a four processor machine, each processor could have a thread running from a different UNIX
server (e.g., PM, FM, DM, SM). This provides a very simple multiprocessing of UNIX services without
having to worry about adding synchronization schemes to those UNIX servers which have been directly
derived from current UNIX kernel code (FM, DM).

Moreover, some of the new servers, such as the Process Manager, have already been structured so that
they can be themselves multiprocessed. Thus, several processes can invoke simultaneously a UNIX sys-
tem call. On a four processor machine, two processes can fork(2), another can issue an open(2),
and still another one a read(2), all in true parallelism. Synchronization on global tables of the Process
Manager is done at a fine level of granularity.

Regarding multiprocessing, servers implemented from UNIX code have the same level of granularity as in
current UNIX kernels. Finer levels of granularity will be introduced in further releases of the system,
using the synchronization primitives offered by the CHORUS Nucleus.

4.2.1.5 Embedded systems

For real time applications running in embedded systems, there may be no need or use for services other
than those offered by the CHORUS Nucleus, the Process Manager and the Socket Manager. These will
provide such applications with access to process and thread primitives, IPC, memory management, and
connection to the hardware. Communication with the outside world can be done through the Socket
Manager, using the services of the Network Manager.

These embedded applications may run in an environment without any other machine managed by
CHORUS. In order to offer more flexibility (file access) and dynamism (loading/unloading programs,
remote debugging) to such embedded applications, file services (including pseudo tty’s), can be provided
through a very simple File Manager which maps all CHORUS IPC file requests to socket communication.
The requests carried through a socket connection are then processed by a UNIX process acting as remote
server and running on any UNIX system.

4.2.2 Examples

The adaptability of the UNIX subsystem is clearly illustrated by the three following real cases.

4.2.2.1 Fault tolerant documents database server

A document database server that runs on a Motorola 68030 board plugged into a MacII3 running CHORUS

has been developed by an independent company. The database application runs on the board which also
supports the disks (mirrored disks and/or an optical jukebox). The only services needed by the application
are disk management and file access. Access to the database services is provided to the outside world
(i.e., the MacII and other clients connected to the MacII by a network) via common memory shared by
the MacII and the 68030 board.

The underlying system is composed of a CHORUS Nucleus (without the Network Manager) and a File
Manager. A library was developed (from the Process Manager code, in one month) to transform every
UNIX file system call into a CHORUS IPC request. The UNIX-like file context is thus managed in user’s
space in the same way as I/O streams are managed in the standard C library. Avoiding a full Process
Manager saves memory space and provides better response time on file access by avoiding traps.

4.2.2.2 X terminal

CHORUS is being used in an X terminal product built by an independent company. The only program that
runs in such a configuration is the X−server, which serves X−window requests coming from clients on
other machines. It is to run in environments without other CHORUS machines.

�����������������������������������
3. MacII is a trademark of Apple Computers

 Chorus systèmes, 1990 − 14 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

The X terminal system is composed of a CHORUS Nucleus, a Network Manager, a Process Manager, a
Socket Manager and a Device Manager (for keyboard and mouse drivers). There is no need for a Pipe or
File Manager. Because the X−server still does some open(2) calls at init, to access devices, a small
dedicated File Manager has been developed (in less than a week) to serve these specific requests.

4.2.2.3 EuroWorkStation

The EuroWorkStation being developed in the EWS project previously mentioned is a high level scientific
workstation. It is organized around a SPARC based symmetric multi-processor (as the main board(s))
which uses a Multibus II. An Intel 80386 based coprocessor board can be added on the MultiBus II.
Access to Ethernet, FDDI and SCSI bus are also provided. Bitmap display is done (remotely) to an
X−terminal. Planned coprocessors include 3D graphics, Lisp and a simulation engine.

The CHORUS system will run on such a configuration with a full UNIX Subsystem on the main board(s).
On the co-processors, only a CHORUS Nucleus, a Network Manager (adapted to the Multibus II) and a
UNIX Process Manager will be loaded. This will allow users to dynamically load programs on the co-
processor from the basic workstation. To access the specific hardware of the coprocessors, an adapted
version of the Device Manager will be loaded on each co-processor.

4.3 Dynamic Configuration

4.3.1 Sub-system configuration

The only UNIX server that needs to be loaded at boot time is the Process Manager, (and the File Manager
if there are disks connected to the machine). With the CHORUS Nucleus it provides enough services to
dynamically load other servers when needed. A very simple access to the system console (if any) is pro-
vided by the CHORUS Nucleus. Of course, UNIX-like tty line disciplines are not implemented in that case.
This allows a shell to run on the console or to provide input/output on a terminal for processes which do
not need UNIX terminal management.

The dynamic loading of UNIX servers is achieved through the standard UNIX interface: fork(2) and
exec(2). The Device Manager, the Pipe or the Socket Managers can be loaded by init(1) from the
UNIX System V "/etc/inittab" file. This results from two services offered by the Process Manager to the
super-user:

− the ability to load a UNIX process into the system address space, as specified at link time. Of course, if
the virtual addresses needed by the process to be loaded are already used, exec(2) will fail.

− the ability to dynamically connect user specified routines to hardware interrupts. Such routines are
invoked each time the interrupt occurs, until the routine has been disconnected from that interrupt.

Each device driver may be implemented in a separate Device Manager (e.g., for bitmaps, RS232 inter-
faces, tapes), these drivers can be loaded only when they are needed and can then be unloaded when they
become useless. These Device Managers and the Pipe and the Socket Managers as well, are in fact UNIX
processes and thus can take advantage of the UNIX services offered by the Process Manager and the File
Manager, allowing them, for example, to record events into log files using standard UNIX system calls.

This dynamism can also be used to change the UNIX behavior of the subsystem. This was used in the
Aphrodite Esprit Project 1535[Mino88] to build a host/target development, remote execution and debug-
ging environment for real-time applications. A simple window manager was developed on top of the
UNIX subsystem. For reasons of efficiency, this Window Manager (loaded as a UNIX process) catches
interrupts directly from the mouse and the keyboard of an AT/386 computer. When the Window Manager
is running, it diverts every interrupt from the Device Manager; the UNIX shell is thus blocked waiting for
input. When the Window Manager becomes useless, quitting it disconnects the interrupt from the Win-
dow Manager routine and the Device Manager continues to work unaffected.

4.3.2 Server configuration

Since UNIX services are implemented by servers built on top of the CHORUS Nucleus interface, it is very
easy to dynamically adapt the resources of each server to the actual needs of the application. This
dynamic configuration relies on the following:

 Chorus systèmes, 1990 − 15 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

4.3.2.1 Adding threads in servers

When a process is created (or servers loaded at boot time), it runs only one thread. Other threads may be
created dynamically. For example, the File Manager and the Device Manager create additional threads
during their initialization phase. As servers are accessed through IPC or traps, their respective number of
threads can be adapted to their varying needs without stopping the system (to reload newly configured
servers). Of course, servers may also delete useless threads.

In particular, such a scheme is used by the File Manager when a diskless site is coming up. The File
Manager is told to create new threads in order to serve such a site. When the site shuts down, those
threads become useless and are deleted.

Currently, these configuration parameters are monitored by the system administrator using dedicated
commands. Another approach would be to let servers create a new pool of threads themselves when the
number of idle threads goes under a low water mark and to delete them when this number raises over a
high water mark. Such configuration issues are discussed in Section 5.

4.3.2.2 Space management in servers

Adding threads in UNIX servers is not the only configuration issue. One must also configure the memory
resources to the size appropriate to the use of the system. For example, if one wants to raise the maximum
number of processes that may run simultaneously on a processor, the Process Manager must resize its
Proc table. Dynamically resizing tables requires allocating memory space for new entries, and algorithms
for allocating, freeing and searching entries that do not depend upon the physical organization of the
tables. Space allocation within an actor can be done by invoking rgnAllocate with the size needed.
This call returns the address of the newly allocated memory region.

The second problem is solved (or eased) by the use of C++. Basic tools for managing "pools" of elements
have been developed. The process table is such a pool. When creating a new process, the Process
Manager invokes "PROC.allocate" to get a free entry. When the process exits, it calls
"PROC.free" to free the entry in the table. The implementation of the pool is hidden by these functions.
The current implementation relies on linked list mechanisms. This pool mechanism is used by the servers
for every new table that has been introduced. It is not used for tables allocated and managed by C code
coming from an existing UNIX kernel implementation. This will be done in a future release of the system.

Having servers implemented as actors and allocating their internal tables in virtual regions eases the
management of the usage of physical memory. Servers such as the Socket Manager, the Pipe Manager
and even the Process Manager may be paged out without disturbing the service. Servers that connect
code to interrupt are locked in memory to avoid page faults upon reception of an interrupt.

4.4 Real-Time operation

Making use of the real-time scheduling provided by the CHORUS Nucleus facilitates development (static
or dynamic) of different scheduling policies in the Subsystem. The UNIX Subsystem of CHORUS takes
advantage of this facility to provide a real-time execution environment.

4.4.1 Changing the priorities of a server

The CHORUS Nucleus schedules threads on a fixed priority basis. Priorities range from 1 (the highest) to
255 (the lowest). Threads running with a priority between 128 and 255 are time-sliced at the same prior-
ity level. In a usual CHORUS configuration, UNIX processes run at priority 128 and UNIX servers at priori-
ties 64 to 68. As explained earlier, this gives the user the ability to run real-time processes with a higher
priority than standard UNIX processes; they may even run with a priority higher than the UNIX servers!

If the range of priorities used by the UNIX servers is not adequate for a given system, the priorities of the
UNIX servers can be changed either statically by recompiling the servers, or dynamically by sending them
a request to change their priority through the threadPriority system call. In both cases, priorities
of these servers may be lowered or raised as needed. In any case, attention should be given to the con-
sistency of the new set of priorities used by the servers: it may not be very meaningful to have UNIX
servers running at the lowest priority, while standard UNIX programs are running at the highest one...

 Chorus systèmes, 1990 − 16 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

4.4.2 Delaying interrupt processing

UNIX servers which deal with hardware interrupts (File Manager, Device Manager) execute interrupt
code at interrupt level, just as in a standard UNIX kernel, providing equivalent response times to those
provided by such UNIX kernels.

However, the File Manager and the Device Manager may also run in another mode. Upon reception of an
interrupt they can just post an event to a dedicated thread (named the "Interrupt Thread") created at init
time, and then return, after the interrupt level has been acknowledged. Posting an event can be done by
means of synchronization primitives offered by the CHORUS Nucleus. The real interrupt routine of the
driver will be executed when the Interrupt Thread gets the processor, depending on its priority. This
"delayed processing of interrupts" minimizes the time during which interrupts are masked, leaving more
time for real-time processes to run and deal with their own interrupts. In this mode, critical sections
management inside the File Manager (or Device Manager) is done without actually masking the inter-
rupts. Of course, this mechanism requires additional scheduling for each interrupt which processing has
been delayed. This implies that the UNIX response time will be affected, therefore this is only useful
when executing real-time applications.

The system administrator can dynamically change interrupt processing from immediate processing (as in
standard UNIX implementations) to delayed processing mode, and vice versa. In addition, the priority of
the thread managing the interrupts can be fixed dynamically. This feature has been implemented in the
File Manager as well as in the Device Manager. The processing mode of interrupts can also be chosen or
even be frozen when compiling the server.

This functionality allows the development of real-time applications in a standard UNIX environment
while editing or compiling the application. Once the application has been written, prior to executing or
testing it, the priorities of the UNIX servers can be lowered, thus minimizing masking periods to enable
the application to react correctly. When the application is finished running, the priorities of the UNIX
servers can be reset to their previous values making interrupts immediately processed and recovering the
initial system behavior. Such facilities avoid the necessity of stopping and reloading the system(s) (the
UNIX development system and the real-time execution system). This mechanism is roughly analogous to
that provided by the UNIX shell with job control, which allows one to stop processes and then to restart
them later. Here the system is not stopped but only "niced".

4.5 Extending system services

Another aspect of the flexibility provided by the CHORUS implementation of UNIX is the ability to
dynamically tailor the services offered by the system to the user’s needs.

4.5.1 Adding system calls

As illustrated earlier, the UNIX Subsystem as been extended in two ways: by a minimum set of extensions
to standard UNIX interfaces for distributed environments, and by CHORUS extensions to provide UNIX
processes with the IPC, threads and virtual memory services offered by the CHORUS Nucleus. In fact, the
second category of extensions may be made accessible or not to UNIX processes.

The Process Manager uses svCallConnect to connect routines to traps (i.e., system calls). But UNIX
services and CHORUS specific services are not implemented through the same "sysent" table, in order to
facilitate the adaptation of the Process Manager to provide binary compatibility with a given UNIX imple-
mentation on a given hardware.

In addition to the standard UNIX interface, the Process Manager provides a service which permits exten-
sions to be made available or unavailable, thus tailoring the interface to particular needs. This capability
will be completed with dynamic loading of pieces of the Process Manager code, when compilers generat-
ing position independent code are more widely available.

This connection of routines to traps can also be used by UNIX processes loaded in system space to extend
the current interface with new services accessible through traps. This allows extensions to the UNIX sys-
tem to be written or provides a new system interface (e.g., an Object Oriented System) on top of the
CHORUS Nucleus simultaneously with the UNIX interface.

 Chorus systèmes, 1990 − 17 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

4.5.2 Enriching the UNIX semantics

Another way to provide more services is to use the file system’s symbolic port mechanism. This has been
used in a research project[Coyo89] that transparently provides duplicated files to UNIX. It does so without
modifying either the interface, existing programs, or even the Process Manager or the File Manager.

At init time, the Duplicating Server creates a port and records it in the UNIX file system. Each time the
File Manager encounters this port when analyzing a pathname in one of its requests, it redirects that
request to that port. The Duplicating Server can then examine the request, duplicate it and send two
resulting requests to two File Managers . After receiving the two responses, it replies to the client pro-
cess, as if it was the initial File Manager.

Example:

If the sub-tree of files to be duplicated starts at the directory "/users/fa/srcdir", the server creates the sym-
bolic port "/users/fa/srcdir.dup". To create a duplicated file (say a source file), invoke your favorite editor
with the following pathname "/users/fa/srcdir.dup/hello.c". When writing, the file is updated on two repo-
sitory file systems, as set by configuration parameters. Afterwards, invoke make and run your program;
even if one of the repository file system fails during the make, the compiler will finish correctly!

This mechanism of request redirection is in fact very similar to I/O redirections or pipes in UNIX. In the
above case, the only thing to be careful of, is to respect the protocol between the Process Manager and
the File Manager. This protocol is actually part of the UNIX subsystem interface, and thus can be quite
easily used.

4.5.3 Static Extensions

There is, in the system description of a process, an "Extend" class whose member functions are invoked
on process system calls such as fork(2), exec(2), exit(2), allowing system writers to add
functionality to UNIX processes, by pure extension of the CHORUS code. This hook has been used to
easily implement a CASE/PCTE UNIX Subsystem (on AT/386) on top of the CHORUS Nucleus.

4.6 Examples

4.6.1 Development of the Pipe Manager

In the early versions of the UNIX Subsystem, pipes were implemented within the File Manager (derived
from System V code). Since then, pipe management has been extracted from the File Manager and
rewritten as a UNIX process which can invoke any UNIX system services.

At init time, a Pipe Manager creates a port and inserts it into a group representing the pipe service. It then
enters an infinite loop: waiting for incoming messages carrying requests (e.g., pipe creation, read, write),
serving the request, replying to the request. As it uses only IPC to receive and reply to requests, it can be
invoked and tested by user programs using the IPC interface of the UNIX Subsystem. This also allows
running and testing this new implementation without disturbing the service provided by the running UNIX
Subsystem, as pipes services are still provided by the File Manager.

Pipe management does not deal with either traps or interrupts, so the Pipe Manager does not need to be
loaded in the system address space. It gets the address space protection of any UNIX process, which
makes it easy to debug. Other benefits from having a system server be a UNIX process are that traces may
be redirected to a file (using shell mechanisms), a crash of the server does not affect the system as a
whole, and standard UNIX debuggers such as sdb can be used.

However, once fully tested, the Pipe Manager is relinked and loaded into the system address space, thus
avoiding additional memory context switches when it is invoked. Finally, the pipe routine of the Process
Manager needs to be modified to invoke the new Pipe Manager instead of the File Manager in case of
pipe system calls. Only then does the system needs to be stopped and reloaded with the new version of
the Process Manager.

4.6.2 Development of a new file system

Developing a new version of the File Manager follows the same steps than those outlined above for the
Pipe Manager, except that disk drivers perform privileged instructions for I/O operations, and symbolic
ports can be used to connect the file tree managed by the new File Manager under test to the file tree

 Chorus systèmes, 1990 − 18 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

managed
by the current operational File Manager.

To access disks from user space, the following mechanism has been used. To be allowed to access
privileged instructions a thread must be executed in the system address space. Before loading the File
Server being tested, a small process that connects two functions to traps using svCallConnect and
one function to the disk interrupt using svConnect, is loaded into the system address space. One of the
trap calls is used to perform privileged I/O instructions to start the I/O. When the driver needs to issue
such instructions, it just does the corresponding trap. The other trap call is used to wait for an incoming
interrupt, it is used by the thread dedicated to delayed interrupt processing. When this thread starts, it
enters an infinite loop: wait for interrupt with the trap function, and trigger the appropriate interrupt rou-
tine. When an interrupt occurs, the connected function is activated by the CHORUS Nucleus. This func-
tion posts an event which is awaited by the trap function called by the Interrupt Thread.

When the new File Server has been initialized, it creates a symbolic port in the system file tree, say
"/tmp/newfs". Each access to files such as "/tmp/newfs/users/fa/myfile" will thus be received and served
by the new File Server as an access to the file "/users/fa/myfile". This allows the full testing of the new
File Server using standard UNIX utilities.

Of course, the new File Manager needs to be tested either on a machine with two disks or on a machine
with one disk, booted as a diskless station, using a remote file system.

To replace the current version of the File Manager with the new one, the system must be stopped and
reloaded. Avoiding stopping the system would imply that File Managers are stateless, or that they can
transmit their current state to each other, which is somewhat complex to implement.

5. Lessons and open issues
The UNIX Subsystem on CHORUS shows clearly all the benefits one can gain from modularity in operat-
ing system development. However, improvements can still be made and alternative solutions to some of
the issues raised by such an implementation are worth considering. Some of these are currently being stu-
died in new versions of the system.

5.1 Performances

Regarding performances, modularity is not as expensive as is usually thought. Table 3 summarizes some
initial performance measurements done on a COMPAQ 386/25. It compares the UNIX Subsystem of
CHORUS with the Microport system.

TABLE 3. − Performance of the UNIX Subsystem

� �� ���

Primitives CHORUS Microport
� ���

getuid 85 µs 80 µs
sbrk(0) 95 µs 128 µs
read (1Kb) 146.8 Kb/s 107.2 Kb/s
write (1Kb) 121.2 Kb/s 56.6 Kb/s
pipe (4096) 415 Kb/s 1212 Kb/s
exec 17 ms 37 ms
fork 17 ms 26.5 ms

� �� ���
��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

The read and write tests work on a 2 Megabyte file, 1 Kilobyte at a time. The pipe test writes and reads 4
Kilobytes blocks through a pipe. These measurements illustrate the viability of implementing a system as
a set of servers without loss of performance. This topic, which is discussed in Section 5.3 leads to some
other performance improvements, which will be illustrated there.

 Chorus systèmes, 1990 − 19 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

5.2 Modularity

Modularity has proven to be very convenient and powerful to adapt the system to hardware
configurations. More modularity could be obtained in particular with the extraction of disk drivers from
the File Manager to have them run in separate actors. This would allow File Managers to deal easily with
remote disks, thus permitting to access floppy disks of diskless stations without any File Manager running
on such a station.

5.3 Servers and Threads

As the UNIX service has been split into independent servers, more system resources are needed in order
to be able to respond to client requests than in other UNIX kernel implementations. For example, for
every u_thread created in a user process one should create one thread in the File Manager, one in the
Device Manager, one in the Socket Manager, etc. Only such a policy can insure that system resources
will be numerous enough to respond to client requests. This is especially true for servers in which threads
can be blocked for a long or infinite time waiting for an incoming event: read on a terminal for Device
Manager for example. While a server thread is blocked, other client requests cannot be served by that
thread. If all the threads are blocked for reading, no process can write on terminals any longer! In other
words, this means that as modularity increases, resource consumption rises, overloading the Nucleus
tables with (most of the time) idle threads.

In fact, it is possible to configure the servers in such a way as to much diminish the problem, although
without eliminating it. Mechanisms are being studied to transparently transform Remote Procedure Calls
to local routine calls when the destination port is located on the same site than the sender. Thus a server is
executed as a "monitor" by the u_threads which issued the system call. As a result, though modularity is
preserved, the consumption of system resources is lowered. Threads running in servers only serve incom-
ing remote requests.

Some preliminary developments in that direction have clearly shown its promise. A particular protocol
between the Process Manager and the File Manager has been developed to simulate such a behavior, and
to permit some real measurements. This transparent transformation of RPC into routine calls impacts the
system in two other ways:

− When a process invokes a server, the code of the server runs at the priority of the process. High prior-
ity processes can be served with respect to their priority. When a real RPC is performed, the request is
performed at a standard priority as defined in the server. Thus, this transformation makes it possible to
provide users with a more real-time system.

− Executing server code in the context of the calling thread avoids context switches improving system
performance. Some measurements have been done on the system emulating this feature. In this system,
transformation of RPC into routine calls has been done for read and write operations. Results are
shown in Table 4.

TABLE 4. − Performance of the UNIX Subsystem when converting RPC

� �� ���

Primitives CHORUS with true RPC RPC converted to routine call
� ���

read (1Kb) 146.8 Kb/s 211.2 Kb/s
pipe (4096) 415 Kb/s 1240 Kb/s

� �� ���
��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�

5.4 Caching

The distributed file system provided by the UNIX Subsystem is based on direct access of the client to the
appropriate File Manager by means of the CHORUS IPC. This makes it possible to maintain full con-
sistency with UNIX file system semantics.

 Chorus systèmes, 1990 − 20 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

An important drawback of such a choice is that there is no caching of remote data on the client side.
Rather than having File Managers cooperate to cache remote data, the use of virtual memory mechanisms
is being studied to implement file access. This still avoids loading a File Manager on a diskless station.
Using virtual memory services makes it possible to take advantage of its caching mechanisms. Open files
can be manipulated as segments cached by the virtual memory manager but not necessarily mapped into a
particular region.

5.5 Symbolic Ports

Symbolic ports allow transparent interconnection of the UNIX name space, and provide a powerful exten-
sion mechanism. This is done without any lexical exception in pathnames. But introducing a new file type
in the UNIX world implies that some standard utilities (less than 10) must be modified to take this new file
type into account, e.g., fsck(1), cp(1), find(1), test(1). In fact, lexical exception is
avoided by a semantic exception!

A general mechanism allowing to transparently (either from a lexical and a semantic point of view) con-
nect servers to any node of a UNIX file tree seems more appropriate and convenient. Feasibility of such a
mechanism is being investigated.

6. Conclusion
Making the CHORUS Nucleus generic prevented the introduction of ‘‘features’’ with ‘‘heavy’’ semantics.
For example, features such as application-oriented protocols, fault tolerant strategies, do not appear in the
CHORUS Nucleus. However, it provides the building blocks to construct these features inside subsystems.

On the other hand, CHORUS provides effective, high performance solutions to some of the issues known
to cause difficult problems to system designers, mainly system (re)configuration (static and dynamic),
adaptability, extensibility, and debugging, which is eased by isolating resources within actors and by
communicating by means of messages providing explicit and clear interactions.

The CHORUS modular structure has been very successful, allowing to provide binary compatibility with
UNIX, while keeping the implementation well structured, portable and efficient.

All these principles were those on which UNIX was initially designed 20 years ago on a standalone time-
sharing computer. Networks and multi-processors introduce today new features and constraints that force
one to "rethink" the internal structure of UNIX in order that it still be a modern operating system. CHORUS

obviously shows that UNIX can be reminded of its original virtues and, while still keeping its standard
interface for application programs portability, (r)evolve to the next generation of systems...

7. Acknowledgements
Vadim Abrossimov, Ivan Boule, Hugo Coyote, Corinne Delorme, Jean-Jacques Germond, Lori Grob,
Marc Guillemont, Sylvain Langlois, Pierre Léonard, Pierre Lebée, Ian Liang, Jim Lipkis, Marc Maathuis,
Denis Metral-Charvet, Will Neuhauser, Maria-Inès Ortega, Bruno Pillard, Didier Poirot, Eric Pouyoul,
François Saint-Lu and Eric Valette contributed, each with a particular skill, to the CHORUS-V3 implemen-
tation on various machine architectures.

Many thanks are addressed to the referees for their helpful comments, and additional credits to Lori Grob
for improving the readability of this paper.

8. References
[Abro89] Vadim Abrossimov, Marc Rozier, and Marc Shapiro, ‘‘Generic Virtual Memory Manage-

ment for Operating System Kernels,’’ Submitted for publication, (April 1989), p. 20.

[Abro89a] Vadim Abrossimov, Marc Rozier, and Michel Gien, ‘‘Virtual Memory Management in
Chorus,’’ in Lecture Notes in Computer Sciences, Workshop on Progress in Distributed Sys-
tems and Distributed Systems Management, Springer-Verlag, Berlin, Germany, (18-19 April
1989), p. 20.

[Acce86] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis
Tevanian, and Michael Young, ‘‘Mach: A New Kernel Foundation for UNIX

 Chorus systèmes, 1990 − 21 − August 1989

Chorus systèmes ‘‘Distributing UNIX Brings it Back to its Original Virtues’’ CS/TR-89-36.1

Development,’’
in Proc. of USENIX Summer’86 Conference, Atlanta, GA, (9-13 June 1986), pp. 93-112.

[Alve88] Jose Alves-Marques, Roland Balter, Vinny Cahill, Paulo Guedes, Neville Harris, Chris Horn,
Sacha Krakowiak, Andre Kramer, John Slattery, and Gérard Vandome, ‘‘Implementing the
Comandos Architecture,’’ in Esprit’88: Putting the Technology to Use, North-Holland Pub-
lishing Co., (November 1988), pp. 1140-1157.

[Cher88] David Cheriton, ‘‘The V Distributed System,’’ Communications of the ACM, vol. 31, no. 3,
(March 1988), pp. 314-333.

[Herr88] Frédéric Herrmann, François Armand, Marc Rozier, Michel Gien, Vadim Abrossimov, Ivan
Boule, Marc Guillemont, Pierre Léonard, Sylvain Langlois, and Will Neuhauser,
‘‘CHORUS, a New Technology for Building UNIX Systems,’’ in Proc. of EUUG
Autumn’88 Conference, EUUG, Cascais, Portugal, (3-7 October 1988), pp. 1-18.

[Li86] Kai Li and Paul Hudak, ‘‘Memory Coherence in Shared Virtual Memory Systems,’’ in Proc.
of Principles of Distributed Computing (PODC) Symposium, (1986), pp. 229-239.

[McJo88] Paul R. McJones and Garret F. Swart, ‘‘Evolving the UNIX System Interface to Support
Multithreaded Programs,’’ Technical Report 21, DEC Systems Research Center, Palo Alto,
CA, (September 1988), p. 100.

[Mino88] Régis Minot, Pierre Courcoureux, Hubert Zimmermann, Jean-Jacques Germond, Paolo
Alvari, Vincenzo Ambriola, and Ted Dowling, ‘‘The Spirit of Aphrodite,’’ in Esprit’88: Put-
ting the Technology to Use, North-Holland Publishing Co., (November 1988), pp. 519-539.

[Mull87] Sape J. Mullender et al., The Amoeba Distributed Operating System: Selected Papers 1984
-1987, CWI Tract No. 41, Amsterdam, Netherlands, (1987), p. 309.

[Pres86] David L. Presotto, ‘‘The Eight Edition UNIX Connection Service,’’ in Proc. of EUUG
Spring’86 Conference, Florence, Italy, (21-24 April 1986), p. 10.

[Rash87] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, David
Black, William Bolosky, and Jonathan Chew, ‘‘Machine-Independent Virtual Memory
Management for Paged Uniprocessor and Multiprocessor Architectures,’’ in ACM Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS II), (October 1987), pp. 31-39.

[Rozi88] Marc Rozier, Vadim Abrossimov, François Armand, Ivan Boule, Michel Gien, Marc Guil-
lemont, Frédéric Herrmann, Claude Kaiser, Sylvain Langlois, Pierre Léonard, and Will
Neuhauser, ‘‘CHORUS Distributed Operating Systems,’’ Computing Systems Journal,
vol. 1, no. 4, The Usenix Association, (December 1988), pp. 305-370.

[Tane86] Andrew S. Tanenbaum, Sape J. Mullender, and Robert van Renesse, ‘‘Using Sparse Capabil-
ities in a Distributed Operating System,’’ in Proc. of IEEE 6th. International Conference on
Distributed Computing Systems, CWI Tract No. 41, Cambridge, MA, (19-23 May 1986),
pp. 558-563.

[Wein86] Peter J. Weinberger, ‘‘The Eight Edition Remote Filesystem,’’ in EUUG Spring’86 Confer-
ence, Florence, Italy, (21-24 April 1986), p. 1.

[Coyo89] Hugo Coyote, ‘‘Spécification et Réalisation d’un Système de Fichiers Fiables pour le
Système d’Exploitation Réparti CHORUS,’’ PhD.Thesis, Université Paris VI, Paris, France,
(June 1989), p. 300.

 Chorus systèmes, 1990 − 22 − August 1989

CONTENTS

1. Introduction . 1

2. The CHORUS Architecture . 2
2.1 Overall Organization . 2
2.2 The CHORUS Nucleus basic abstractions 3
2.3 Virtual Memory Management 5
2.4 The Supervisor . 5

3. The UNIX Sub-System . 5
3.1 Overall structure . 5
3.2 Functional extensions . 7

3.2.1 File System extensions 7
3.2.2 Process Management extensions 7
3.2.3 Other extensions 8

3.3 Implementation . 9
3.3.1 Structure of a UNIX Process 9
3.3.2 Process environment known by its set of ports 10
3.3.3 The Process Manager 10
3.3.4 The File Manager 11

4. UNIX brought back to its original virtues 12
4.1 A tool-kit system . 12
4.2 Modularity, static configuration and distribution 13

4.2.1 Typical configurations 13
4.2.2 Examples 14

4.3 Dynamic Configuration . 15
4.3.1 Sub-system configuration 15
4.3.2 Server configuration 15

4.4 Real-Time operation . 16
4.4.1 Changing the priorities of a server 16
4.4.2 Delaying interrupt processing 17

4.5 Extending system services . 17
4.5.1 Adding system calls 17
4.5.2 Enriching the UNIX semantics 18
4.5.3 Static Extensions 18

4.6 Examples . 18
4.6.1 Development of the Pipe Manager 18
4.6.2 Development of a new file system 18

5. Lessons and open issues . 19
5.1 Performances . 19
5.2 Modularity . 20
5.3 Servers and Threads . 20
5.4 Caching . 20
5.5 Symbolic Ports . 21

6. Conclusion . 21

7. Acknowledgements . 21

8. References . 21

- i -

LIST OF FIGURES

Figure 1. − The CHORUS Architecture 2

Figure 2. − The CHORUS Nucleus 3

Figure 3. − Actor Address Spaces 3

Figure 4. − CHORUS Nucleus basic abstractions 4

Figure 5. − UNIX as a Set of Independent Servers 6

Figure 6. − Interconnection of File Trees 7

Figure 7. − UNIX Process as a CHORUS Actor 9

Figure 8. − File Manager Dynamic Structure 11

Figure 9. − Process and File Manager File Context 12

- ii -

LIST OF TABLES

TABLE 1. − Supervisor Interface 5

TABLE 2. − UNIX Symbolic Port System Calls 7

TABLE 3. − Performance of the UNIX Subsystem 19

TABLE 4. − Performance of the UNIX Subsystem when converting RPC 20

- iii -

