
CS/TR-91-91

A Distributed Consistency Server for the CHORUS System

Vadim Abrossimov
François Armand
Maria Inés Ortega

Chorus systèmes
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1. Introduction

This paper describes how distributed shared memory is being implemented on the CHORUS

system, by a set of servers running outside the CHORUS Nucleus itself. These servers cooperate
to implement, in a decentralized fashion, distributed consistency of data between multiple sites.
The algorithms used for that purpose derive from those described in[Li89a] . This service will be
used to provide Distributed Shared Memory in the CHORUS/MiX V.4 subsystem running on
top of the CHORUS Nucleus. The CHORUS/MiX V.4 subsystem is compatible with UNIX SVR4
and is designed to provide a Single System Image on multicomputer architectures.

The next sections will briefly describe the CHORUS system and the CHORUS/MiX V.4 distri-
buted system, and will detail some of the reasons why Distributed Shared Memory is needed
when building up a Single System Image.

We will then spend some time to summarize similar mechanisms designed and implemented in
related projects. After having summarized the CHORUS Virtual Memory interface and the main
goals of the design of our servers, we will describe their design and some implementation
details. We will conclude with some lessons learned and outline future developments of these
servers.

2. CHORUS/MiX

2.1 CHORUS Architecture

A CHORUS System is composed of a small-sized Nucleus and of possibly several System
Servers that cooperate in the context of subsystems to provide a coherent set of services and a
user interface. A detailed description of the CHORUS system can be found in[Rozi88a] . Among
the other systems that have adopted similar architectures one will find: Mach [Acce86a] ,V-
system [Cher88a] and Amoeba [Mull87a] are some examples.
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2.2 CHORUS Nucleus Abstractions

The actor defines an address space that can be either in user space or in supervisor space. In the
latter case, the actor has access to the privileged execution mode of the hardware. User actors
have a protected address space. One or more threads (light weight processes) can run simul-
taneously within an actor. They can communicate using the memory of the actor if they run in
the same actor.

Otherwise, they can communicate through the CHORUS IPC that enables them to exchange mes-
sages through ports designated by global unique identifiers (or UI). A message is composed of
a (optional) body and an (optional) annex. Ports may be dynamically inserted into or removed
from port groups. The CHORUS IPC mechanism allows a message to be sent to all ports of the
group (broadcast mode) or to only one port in the group (functional addressing mode).

2.3 The CHORUS/MiX V.4 subsystem

MiX V.4 is a CHORUS subsystem providing a UNIX interface that is compatible with UNIX
SVR4. It is both BCS and ABI compliant on AT/386 machines. It is composed of a set of
cooperating servers that run on top of the CHORUS nucleus and which communicate only by
means of the CHORUS IPC. The following servers are the more important:

� The Process Manager (PM) provides the UNIX interface to processes. It implements ser-
vices for process management such as the creation and destruction of processes or the send-
ing of signals. It manages the system context of each process that runs on its site. When the
PM is not able to serve a UNIX system call by itself, it calls other servers, as appropriate,
using CHORUS IPC.

� The File Manager (FM) also refered to as the Object Manager (OM) performs file manage-
ment services.

� The Streams Manager (StM) manages all stream files such aspipes, network access, tty’s,
named pipes.

CHORUS/MiX V.4 has been designed to be distributed over a set of sites. The ultimate goal of
this design is to provide Single System Image semantics, masking multicomputer topologies to
user process. Among the features that must be provided to achieve such a goal, one will find the
following: single file name space, transparent access to any file from any node of the multicom-
puter, unique process identifiers name space, remote execution and process migration capabili-
ties...

Some of these features have already been developed and proven within the previous version of
the MiX subsystem (MiX V.3.2) which is compatible with UNIX SVR3.2 systems. The
Locus[Pope85a] system although not based on a microkernel has also demonstrated such capabili-
ties.

3. Needs for Distributed Shared Memory

Among the reasons to provide distributed shared memory in a UNIX SVR4 compatible distri-
buted system, one may list the following: processes running on different sites may communicate
through System V IPC shared memory mechanism, regular files being accessed concurrently
from different sites need to be maintained consistent.

Unix systems permit users to map files into their process address spaces. This mapping of files
can be shared between several processes. When a file is mapped it can either be read or written
by simply reading or writing an address location within the process address space corresponding
to the offset of the byte in the file. If the mapping is shared between two processes, every
modification made by any of the two processes is immediately visible to the other one. This
behavior must be maintained within the distributed system even if the two processes are running
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on different nodes.
In a distributed system, in order to achieve good performance when accessing remote files, it is
desirable to cache, on the client side, parts of the files being accessed. This raises the problem of
maintaining coherence between all these client caches. In CHORUS/MiX this problem is identi-
cal to the "mapped file" issue.

In addition, shared memory as opposed to IPC mechanisms provides a simpler abstraction to the
application programmer to enable multiple processes to communicate. Thus it seems a quite
desirable feature although not without potential pitfalls when misused.

4. Related Works

There are numerous works and projects which deal with distributed shared memory
consistency.There is no room here to describe all of them. Generic surveys of literature dealing
with this topic may be found in[Hell90a] ,[Nitz91a] ,[Stum90a] and[Tam90a] . We will focus on the
work conducted in IVY[Li89a] and Leases[Gray89a] .

4.1 IVY

IVY is a study of the memory coherence problem in designing and implementing a shared vir-
tual memory on loosely coupled multiprocessors. Shared data is paged between processors.

The protocols assume that every page is owned by a site. The ownership can be fixed or
dynamic. In the fixed approach a page is always owned by the same processor. In the dynamic
case the owner of a page can change but there is always only one owner at any given time,
namely the last site that has had write access to the page. Page owner information is managed
according to one of the following strategies: centralised where only one site knows all page-
site mapping and, distributed where several sites cooperate to manage the page ownership.

The distributed policy although more complex to implement provides better throughput. The
work descibed in this paper derives from this mechanism, but provides some extensions which
will be described later.

IVY’s solutions operate only with access on one page a time. If the Chorus mapper wants to
serve many Unix servers it must make sure that the access to the object’s fragments is atomic.
Moreover, we support different page sizes; the granularity is not fixed. In a CHORUS system,
several algorithms implementing different coherence semantics may coexist: coherence algo-
rithms are implemented by an independant actor outside of the nucleus.

4.2 Leases

Leases proposes an efficient fault-tolerant mechanism for distributed virtual memory con-
sistency that handles host and communication failures using physical clocks. A lease is a con-
tract that gives its holder specified rights over property for a finite period of time. In the context
of caching, a lease grants to its holder control over writes to the covered datum during the term
of the lease. The server must obtain the approval of the leaseholder before the datum may be
written.

One of the problems of this algorithm is to determine the duration of the lease. It is based on a
trade-off between minimizing lease extension overhead versus minimizing false sharing. Short-
term leases have a number of significant advantages over longer leases, including lower write
delays resulting from client crashes, lower recovery delay from server crashes and reduced false
sharing.

We think that this work would be interesting and could be incorporated in the future with our
work because it provides a mechanism to avoid thrashing and fault-tolerant problems.
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Chorus systèmes A Distributed Consistency Server for the CHORUS System CS/TR-91-91

4.3 Miscellaneous

Mirage[Flei89a] provides a consistent distributed shared memory using infinite-term leases.
Miragés property permits the readers or the (single) writer of a page uninterrupted access to the
page for a fixed period of time, regardless of other processes requesting it.

Munin[Benn90a] is a DSM system proposed and currently being developed at Rice University.
Instead of a single memory coherence mechanism for all shared memory, Munin employs
several different mechanisms, each appropiate for a different class of shared data object.

Another direction is a DSM accomodating heterogeneity. This is a difficult problem, because at
the page level, byte and words are the primitives, not types data objects. Arcadés support of
heterogeinity has led naturally to sophisticated and powerful kernel-level support for distributed
shared memory using a langage approach[Cohn91a] . This problem has been also dealt with
in[Zhou90a] and[Stum90a] .

5. CHORUS Virtual Memory

The CHORUS Virtual Memory (VM) guarantees local memory coherence and offers tools to
build distributed memory coherence[Abro89a] . In this section we only present the VM interface
that is used to build external mappers.

5.1 Basic Abstractions

A segment is a collection of data with an associated name (eg: a file). This name is a capability
(segcap) exported by external servers called mappers (eg: the MiX File Manager) and is built
from a server’s port Unique Identifier and a key that is meaningful only within that server.
These servers manage the implementation of the segments, as well as their protection and desig-
nation. A segment can be either expliclity read and written through the sgRead/sgWrite
CHORUS system calls, or mapped in an actor’s address space.

The nucleus encapsulates the physical memory, holding portions of the segment in a per seg-
ment local cache object (see figure 1). A local cache object is designated by its capability; the
server for local caches is the nucleus. In addition, each local cache contains a log of all pages
which have changed relative to the segment. With each page in the cache, there is associated an
access right that describes the possible operations (e.g read/write) allowed at a given time.

On a site, the same cache object is used for both the mapped and the explicit segment access,
thus insuring that any modification done through one interface will be immediately visible
through the other. In other words, the unicity of the cache object avoids any double caching
issue for a segment. When multiple sites use the same segment, the corresponding cache objects
(one per site) will be named with different local cache capability (lccap), thus enabling a
mapper to distinguish between these different local caches, and to implement a distributed con-
sistency maintenance protocol.

Page faults generated by reading or writing the memory associated with a mapped object will,
in turn, produce requests to the mapper for the corresponding access right and data from the
object. When the nucleus wishes to free modified pages, it sends requests to the mapper to write
back the modified data.

A mapper exports a simple segment access interface (described in the next section) to the
nucleus. Conversely, the VM exports an interface allowing a mapper to control the state of the
local cache associated with a segment. Both interfaces rely on the CHORUS IPC mechanism.

5.2 The Segment Request Interface

The segment request interface provides a mechanism by which a nucleus can demand and return
pages of a segment to a mapper. It also provides a means for determining access rights to parts
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Figure 1. − Local Caches

of a segment, without shipping the associated data, and to page out parts of a local cache. The
requests which make up this interface are:

� mpGetAccess (segmentCapability, size, offset, requiredAccess:R/W)
The mpGetAccess request permits a nucleus to request read/write access to a fragment of a
segment. If a legitimate access is requested then the mapper will return a success indication.

� mpPullIn (segmentCapability, offset, size, accessRequired:R/W)
This request is used by the nucleus for demanding read/write access and the data of the seg-
ment to the mapper. If the mapper indicates success then it must supply some data together
with the reply. The data returned may already be dirty (not yet saved on backing store). If
the mapper indicates failure then the local cache will remain unchanged, and the page fault
will not be satisfied. An mpPullIn request carries an implicit mpGetAccess request for the
fragment.

� mpPushOut (segmentCapability, offset, size) ;
This request causes data to be updated from a local cache to a mapper. Usually dirty pages
are pushed out, but clean pages may also be pushed out upon explicit request of the mapper
(see lcFlush below). The mapper can write the data to the segment (eg: on secondary
storage) or send the data to another site which has made an mpPullIn request.

� mpCreate ()
This request is the means by which the nucleus creates a segment for an internally created
local cache (e.g. Swap). In case of success it returns the capability for the segment being
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created.

	 mpDestroy (segmentCapability)
This request permits the nucleus to end the association between a local cache and its seg-
ment which was created by an mpCreate call.

5.3 The Local Cache Request Interface

The local cache request interface provides the means for mappers to maintain control over the
data they supply to local caches. We present the lcFlush operation which disposes of data in a
local cache and lcSetRights which changes the access rights associated with a page.

5.3.1 lcFlush

lcFlush is called by the mapper to invalidate, to change the access rights of, or read a local
cache. It takes as arguments an offset, a size, a local cache capability, and a flag. The flag indi-
cates the mode of flush and may be: invalidation mode, invalidation mode and read-cache or
change of access from write to read and read-cache. An lcFlush operation performed against a
local cache may result in one or several mpPushOut requests from the CHORUS VM to the
mapper. Flushing a local cache is a synchronous operation, and thus will return to the caller
when the corresponding mpPushOut operations will have completed.

Let us focus on six relevant situations which can occur when a lcFlush is called:

1. The flag is "invalidate" and the page has not been modified (figure 2.1): in this case the
page is invalidated and the operation returns.

2. The flag is "invalidate", the access rights granted to the local cache were "read", but this
page has been modified and the modifications are not yet written-back (figure 2.2). This
case is possible if an access rights change from write to read has previously occurred. The
page is then invalidated and a mpPushOut() to the mapper is performed.

3. The flag is "invalidate" (figure 2.3), the access rights granted to the local cache were
"write", and the page has been modified: the site loses all rights on the page and the page
is pushed out to the mapper. In fact, this case is identical to the previous one.

4. The flag is "read-cache" and the page has not been modified: an mpPushOut to the
mapper is peformed (figure 2.4), but the page remains in the site with the same access
rights.

5. The flag is "read-cache | invalidate": the page is invalidated and an mpPushOut is per-
formed whether the page has been modified or not (figure 2.5).

6. The flag is "read-cache | change-access" and the page has been modified: the access
rights change from write to read and an mpPushOut() occurs (figure 2.6).

5.3.2 lcSetRights

The lcSetRights() changes the access rights associated with the page from write to read or
invalidates the data (recalls all access rights). It receives the offset and size of the fragment
being involved, the capability of the segment and an optional invalidate flag.

In the next paragraph we present, two examples of the use of this function made by the mapper.

Figure 3 shows a page with write access right:

1. In the first case (figure 3.1), the page has not been modified so the access right is changed
from write to read and the operation returns.

2. In the second example (figure 3.2), the page has been modified, the access right is also
modified but the page remains modified with read access rights.
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5.3.3 Data Transfer Mechanism

External Mappers that provide only consistency mechanisms but no storage for segments do not
need to access the data of the segment. They just need to move these data around ("receive" and
"forward"). The CHORUS segment interface allows one to move data by using a "Data Descrip-
tor" rather than by giving the address and size of the data to be moved. Thus, one can avoid
mapping or copying data in a Mapper if it is not needed.

6. The Distributed Coherency Server

6.1 History and Main Goals

We have already developed a Coherency Server that implements the "centralized" algorithm as
described in IVY[Orte91a] . In such a case, when a site A wants to get a page of a segment, it has
to send a mpPullIn request to the "centralized" mapper. Let us suppose that the requested page
was already loaded with "write" access granted on site B. The mapper will then have to reclaim
the page from site B (using lcFlush) before being able to send this page back to site A.
Such a scheme although simple has the drawback to move the page twice (from site B to the
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mapper, and from the mapper to site A). This consumes network bandwidth and makes the
mapper a potential bottleneck. Experiments done in IVY have also shown that this algorithm is
not the most efficient. Thus, we wanted to implement the "dynamic decentralized" mechanisms
as described in IVY.

When designing this service we had several goals in mind:


 Independent Server
In the same way, mappers are not part of the CHORUS Nucleus, so that system builders may
implement the coherency policy they need, we wanted to have consistency be implemented
outside any CHORUS/MiX File Manager. This is not only helpful to start coding and debug-
ging, but also provide an easy way to provide distributed consistency for any file system
server that exists or will exist. Such an independent server may also be used in any other
subsystem that requires the same kind of consistency (eg: Object Oriented subsystems). Due
to the encapsulation of the consistency policy, it is also easier to make it evolve without
impacting on either the CHORUS VM or the MiX File Manager.

� Support of Unix semantics
We had some additional requirements: the mapper should at least provide the basic mechan-
isms to fully support transparent UNIX semantics in a distributed environment. Mainly, one
must guarantee that read(2) and write(2) operations are processed serially. In other words, a
read operation occurring concurrently with a write operation on overlapping area of a file,
may return data as they were before the write or as they are after the write complete. This
must be guaranteed even though the read and write operations are done on large fragments
of the file (i.e.: larger than a page). This is an extension to the service provided in IVY
which deals only with page access concurrency.

� Heterogeneous Granularity
In a distributed environment one may have machines running with various virtual page size

 Chorus systèmes, 1992 − 8 − March 1992
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(whether they have or not the same instruction sets is another issue): Sun3 machines used
8Kbytes pages whereas other 68K based machines used 4Kbytes pages. We must support
such environments. Object Oriented subsystems may also have requirements for consistency
that are different from page aligned common needs. Thus, each segment managed by our
service has an associated "granularity" attribute, that will help to deal with such requests: a
granule is the smallest size of the segment that can be granted to a mapper’s client.

6.2 Single Writer / Multiple Readers

One of the ways to insure consistency is to block any read operation on a fragment of a segment
while a write operation is in progress on the same fragment. When a write operation has com-
pleted, one can unblock the pending read operations after having given them back the new
image of the fragment as modified by the write. Reciprocally when a write operation starts it is
blocked until all the "in progress" read operation have completed. Thus, at any given time, one
may have over the network either several read-only copies of the fragment or one, and only
one, write copy of the fragment.

Here, "read-only copy" means that the access right associated to the page is set to read. If a user
wants to write into that same page, the CHORUS VM will handle the "artificial" write fault and
will ask (using mpGetAccess) the mapper for the "write access right" on the page.

In order to achieve this, one needs to know which fragments of an object are on which sites and
with which access rights (Read/Write). So, with this information we are able to revoke the
appropriate rights and/or data. The write access and/or data will be given to a site that wants to
write a fragment that was shared readable between several sites. Similarly the read access and
data will be given to a site that wants to read a fragment that was previously writable on another
site, or readable on several other sites.

6.3 Server Architecture

The decentralized Server is, in fact, composed of multiple servers: one and only one Global
Mapper and one Local Mapper per site. We will illustrate the basic architecture of the decen-
tralized mapper, by describing what happens when a regular file is opened and accessed from
two sites. The first site opens the file and writes a page. Then the second site, will open the same
file and read that same page.

To perform an open, the PM sends a request to the MiX File Manager which loads the
corresponding vnode in memory and generates a capability (named real capability) to access
that vnode. The File Manager then sends an mpAttach request to the "Global Mapper" (GlMp)
with the capability naming the vnode. The Global Mapper records that a new segment is now
becoming active and associates a so-called coherent capability with the real capability. This
capability is sent back to the OM, and then to the PM. The coherent capability is built in such a
way that requests applied to this capability will be received by the Local Mapper of the site
where it is used (see "Building a Coherent Capability" below).

When the PM has to perform a write operation, it applies the appropriate CHORUS system call to
the capability it has received at open time. The CHORUS Virtual Memory generates an mpPul-
lIn request that will be received by the Local Mapper. The Local Mapper will then direct this
request to the Global Mapper, which in turn will forward it to the MiX File manager. From that
point, the Local Mapper of the requesting site is the owner of the page, and known as such by
the Global Mapper (see figure 4).

Thus, when a second site wants to read the same fragment of the same file, its Local Mapper
sends a request to the Global Mapper, which replies that the (probable) owner of the page is the
Local Mapper of the first site. Thus, the Local Mapper of the second site is able to request the
access and the (up-to-date) data directly from site 1. Before replying, the Local Mapper running
on site 1 needs to reduce the access rights of the local CHORUS Nucleus. This is done using the
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lcFlush service, and generates, in turn, a mpPushOut of the modified page to the Local Mapper
(see figure 5).
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A LoMp running on a given site will receive all of the requests sent by the CHORUS virtual
memory of that same site. If the local mapper is the owner of the fragment it will be able to
satisfy the request; otherwise it will have to send the request to the last known owner (or prob-
able owner) of the fragment. The GlMp is the default owner of all the fragments of a segment.
Thus, if a LoMp doesn’t know anything about a fragment, it will ask the GlMp which will either
reply with the data or will indicate which LoMp is the probable owner of a fragment.

All fragments have, at any given moment, a single local mapper which "owns" the fragment. A
LoMp remains the owner of a fragment until a write access request is received, in which case,
ownership is immediately transferred to the new writing site. The local descriptor for the frag-
ment is updated to reflect the new owner. The next access requests received by an old owner
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will be re-directed to the new owning site. The LoMp has a knowledge of the fragments’ prob-
able owner, and the protocol used insures that the request will reach the owner of the fragment
after a finite number of tries.

In this way, only the local mappers which share a fragment cooperate in order to maintain its
consistency, thus increasing the degree of parallelism. Local mappers use an internal protocol to
minimize the number of steps needed to find the owner of a fragment. Our algorithm reduces
the number of local mappers to intervene and minimizes the data transfer from one site to
another.

6.3.1 Probable Ownership

The performance of the distributed algorithm depends on how efficiently the information on a
fragment probable owner is maintained. Fewer steps to reach the fragment owner will be neces-
sary if the probable ownership information is "recent". In order to improve the accuracy of the
knowledge of the "probable" owner by the local mappers, the probable owner field is updated
with every communication between local mappers.

Figure 6 illustrates a possible access path from a LoMp, which performs a write access request
(site 1), to the local mapper which owns the fragment (site 3). In the initial state the fragment
information about the probable owner is the following: the Local Mapper of site 1 believes the
probable owner is site 2, the Local Mapper of site 2 has its probable owner set to site 3 which is
effectively the current owner of the fragment.

In figure 6.a LoMp 1 sends a write access request message to LoMp 2 (its probable owner).
LoMp 1 will become the owner of the fragment because it asks for write access. Therefore
LoMp 2 updates its probable owner field to LoMp1 before replying with LoMp 3 as probable
owner. LoMp 1 now knows a new probable owner of the fragment (LoMp 3), and restarts its
search until it finds the owner of the fragment (see figure 6.b).

In our example LoMp 3 is the owner of the fragment and the request implies owner change. So,
LoMp 3 updates LoMp 1 as probable owner and replies to the the required access. When LoMp
1 receives the reply message from LoMp 3 it, stops the owner searching algorithm and becomes
the owner of the fragment (see figure 6.c). The search for the owner is known to be finite
(see[Li89a] ). For example, after step 8.b, every site requesting a fragment from site 2 will see its
request re-directed to site 1 (not site 3) where it will be blocked until site 1 acquires the frag-
ment.

6.4 Some Examples

Rather than describing the entire mechanism we will briefly describe some examples, illustrat-
ing how the distributed servers work.

6.4.1 Building a Coherent Capability

The first problem to solve is the naming issue. How to build a capability that will represent the
coherent segment? We had one constraint to achieve this goal: the Local Mappers (LoMp) must
be able to serve a request for an object they are not yet aware of. This avoids to modify the
existing protocols between CHORUS/MiX V.4 servers. Moreover, in a Single System Image
environment, processes may freely migrate from one site to another, thus the capability used to
access a file in a coherent fashion must be such that there is no need to deal with Local or Glo-
bal Mappers at migration time, so that migration can be kept as light as possible. This is
achieved by constructing capabilities as described below (figure 7):

— The port on which the Global Mapper receives requests, is inserted in a static port group
which has a unique 32 bit stamp. The port of the GlMp is the only one to belong to that
group. This allows to name uniquely the mapper with a 32 bit long identifier.
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Figure 6. − Searching owner

— Thus a segment managed by the GlMp will be uniquely identified by its so-called "Global
Capability (Gc)" built from the Global Mapper group stamp, and a Unique Identifier of the
segment within the Global Mapper (e.g. address of the structure representing the segment).

— Each Local Mapper has a port on which it receives requests either from the local CHORUS

Virtual Memory or from other Local Mappers. A group of ports, called the Local Mapper
group, contains all these ports. Thus, on any site it is possible to reach the Local Mapper by
using the name of that Local Mapper group with a functional addressing mode.

— The capability (Lc) used by a process to access (map, read... ) a coherent segment is built by
the Global Mapper from: the name of the Local Mapper group, the Unique Identifier of the
segment within the Global Mapper and the Global Mapper group stamp.
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Any Local Mapper, using this capability is able to rebuild the "Global Capability (Gc)" to send
a request to the appropriate Global Mapper for a segment.

Rc GcLc

OM Porte

Vnode

Grp. LoMp F

GlMp Stamp.

Grp. GlMp

undef.Key r

UID within
the GlMp

UID within
the GlMp

Figure 7. − Segment capabilities

6.4.2 mpPullIn

In the mpPullIn example (figure 8), the initial state is the following: the fragment data is present
only on site 1 and has been modified. In our algorithms the fragment data may be modified only
on the site where the local mapper is the fragment owner, the LoMp 1 (i.e. LoMp 3 needs to
acquire the write access first).

The virtual memory of site 3 wants to get the fragment data and the write access (mpPullIn(W)).
The last probable owner known by LoMp 3 is LoMp 2, thus it sends a dmpPullIn(W, site 3)
request to LoMp 2. dmpPullIn is the internal version of the mpPullIn request which is
exchanged between Local Mappers. This protocol carries extra information allowing LoMp’s to
update their knowledge of the owner of a fragment.

LoMp 2 is no longer the owner of the fragment so it is not able to give the data and access of the
fragment but it replies with its probable owner: LoMp 1. The LoMp of the site 2 updates its
fragment owner notion: LoMp 3 because the access required was write. At this moment, the
LoMp 3 must retry the operation with the next probable owner obtained. In this example the
LoMp 1 owns the fragment, then it will be able to return the data and the required access.

The LoMp 1 invalidates the fragment in the virtual memory. This operation causes a
mpPushOut request from the virtual memory to the local LoMp. The LoMp 1 records the new
owner of the fragment: LoMp 3 before replying (returnDmpPullIn) with the data and the write
access.

When the virtual memory needs physical memory space, it performs a mpPushOut request in
order to write back the fragment modifications before freeing the corresponding physical page.
So, it may occur that the data is no longer present (or cached) on the owner’s site. In this case
the owner LoMp will send a dmpPullIn request to the global mapper which will retrieve the
data from the real server (e.g. MiX File Manager).

In the mpPullIn reply protocol a local mapper can indicate to the virtual memory that the given
fragment has been modified but that these modifications haven’t been sent to the global mapper.
In this case the virtual memory will install the data with the dirty bit set.
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6.4.3 Atomicity on large fragment

The local mappers must be able to process requests asking for access rights to a range of several
pages. To solve this problem without deadlocks, we insure that pages will be acquired on any
site in the same order.

For example, if two sites (I and II) ask for a commo fragment set, say, from page 1 to 3 of a seg-
ment, they will try to acquire page 1 first, without holding any other page of the desired set they
may already have on their site. Therefore, if site I has get the ownership of page 1, before site II,
site II will accept to give up the ownership of any page of the set until it becomes owner of the
first page. When site 1 will release ownership on page 1, site II will be able to gain access to
page 1, then to page 2 and finally to page 3. It cannot acquire access to page 2 before having
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gained access to page 1. Similarly, it cannot gain access to page 3 before having gained access
to page 2.

6.5 Implementation Details

6.5.1 The GlMp

The GlMp performs segment management: it must maintain only one entry per real capability.
The global organization tables are represented in the figure 9.a.

— Hash segment table: this is an array of segment list heads accessed via a hash function. Each
list is protected by a mutex that is acquired only to walk through the segment list to search,
add or delete a given segment. There is only one entry for a given segment.

— Segment structure: The segment structure fields are the following:

 mutex B: the second level of synchronisation. It is acquired for any operation performed
against the segment descriptor.

� RealCap: this field contains the real capability of the segment.
� Ref. counter: the reference counter maintains the number of "attach" requests performed

with the same real capability.
� Granularity: the granularity is fixed by the segment (i.e. it is the smallest possible size

of a fragment).
� head fragment list: this points to the ordered, disjoint fragment list of the segment that

have been requested by LoMp.
� head LoMp’s list: it points to a local mapper list. Which contains all local mappers that

have requested access to at least one fragment held by this global mapper.

— fragment structure: the fragment structure contains the description of a fragment. The com-
ponents of this structure are the offset, number fragment (offset/granularity) and the access
right granted to the probable owner of the fragment. The probable owner is the last LoMp
that has requested a write access for that fragment to the GlMp.

6.5.2 The LoMp

The local mapper structures (see figure 9.b) are similar to the GlMp structures The overall
structure is the same but a local mapper must manage other information in order to maintain
fragment coherence.

� hash segment table: the structure is identical to the GlMp hash segment table.

� segment structure: this structure has some different information. Its fields are the following:

� GlobalCap: the Gc (global capability) is rebuilt by the local mapper upon the first
request received from the local CHORUS VM, it gives access to the GlMp segment
description of the corresponding real segment.

� Granularity: this information is obtained from the Global Mapper during the first getAc-
cess or pullIn.

� MyCache structure: this structure contains the local "local cache" associated to the
coherent segment. There exist only one local cache per segment per site. Due to the
preemptive scheduling provided by the CHORUS Nucleus, message passing in CHORUS

can not guarantee the soundness of message ordering even though network protocols
may insure it (i.e. messages sent from a port p to a port p’ may arrive in a different order
than they have been sent). This may cause an inconsistent situation; a lcFlush sent after
a mpPullIn reply may arrive before to the VM. The stamp is used to solve a synchroniza-
tion issue between the mapper and the CHORUS VM, as the VM guarantees to serve mes-
sages according to their stamp order.
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� Fragment structure: this structure contains all information about the fragment.
� Mutex C: this mutex permits requests on different fragment of the same segment to be

run in parallel.
� NumberFrag: as we use a fixed granularity per segment we can define a single number

per fragment (offset/granularity).
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� Access: is the fragment access right granted by the LoMp to the VM for this fragment. It
may be WRITE, READ or NULL.

� ProbOwner: this field contains the information of the last owner as known by this
LoMp.

� FlagOwner: the FlagOwner’s value is "true" when this LoMp is the owner of the frag-
ment else it’s "false".

� Head LoMp’s list: if the LoMp owns one fragment and there are several "read copies" of
it in the network, this list contains the LoMps which have performed a mpPullIn(R) or
mpGetAccess(R) operation on that fragment. This information is used at invalidation
time.

� Status & Mutex: the Status value describes the pending request. This information is
used when a mpPushOut request is received to determine whether the data should be
written back to its storage (e.g.: mpPushOut corresponding to a UNIX sync operation) or
sent to another LoMp (e.g. : mpPushOut corresponding to a mpPullIn operation). This
allows to avoid writing back data to its storage when not needed.

 Buffer(dataDesc): Reference to the data being moved that avoids mapping it into the
mapper address space, and thus to manage the memory address space at each
mpPushOut/mpPullIn operation.

! DirtyBit: this information is recorded at the same time as the body reference
(mpPushOut time). If the data is "dirty" DirtyBit value is 1 else null. In the pullIn reply
protocol we can indicate to a requesting LoMp if the data has not been written back after
the last modification. The LoMp of the requesting site will install the page as already
dirty.

7. Lessons, Status and Future Work

We have adapted the general description of the "dynamic decentralized" algorithms used in IVY
to the CHORUS/MiX environment. This basis has been extended to:

— Support for UNIX semantics:
— It deals with secondary storage issue, allowing data to be written back to the storage

server (i.e.: to the disk) or to be moved "dirty" from one site to another.
— It proposes a scheme to determine the initial location and owner of a fragment, without

using a fixed partition mechanism. Such a mechanism would be meaningless in a Single
UNIX System Image, where any node can access (or not) any file.

— Finally, it extends the basic mechanisms to solve the atomicity issue for concurrent
read/write operations on overlapping fragments of a file.

— Independent reusable Server:
— The distributed consistency server is independent from both the CHORUS Virtual

Memory and from MiX File Managers. Thus, it could effectively be used in any other
environment provided that the protocols are implemented. Due to the notion of granular-
ity associated with a segment, one could potencially use these servers to manage one
byte long fragments. In fact, a 2 or 4 byte long fragment could be an integer managed in
a distributed consistent way. In other words, our Distributed Consistency server acts
mainly as a distributed "token" manager rather than as a Distributed Shared Memory
Server.

— The coherency policy being implemented outside the CHORUS Nucleus itself, this allows
some segments to be managed by a "strictly coherent" policy, while other segments may
be managed by other mappers according to different schemes.

— The independence of the server from the nucleus and the subsystem has allowed us to
develop it in parallel with the MiX V.4 subsystem, and to test and enhance the CHORUS

Virtual Memory interface without being required to implement a full distributed UNIX
V.4 system. Once again, micro-kernel and modularity has proven to be an efficient way
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to develop system software.

The mapper has been implemented and a first version of it is running on COMPAQ 386
machines connected through Ethernet. It is coded in C++. The GlMp is 2500 lines of code and
the LoMp is 4500 lines of code. Experiments are also being conducted on a distributed memory
multicomputer platform. However, it is still too soon to show any performance figures.

In this first version, we have not paid much attention on the internal mechanisms that manage
the ordered disjoint list of fragments. There is still work to be done to manage these lists in an
efficient way that does not consume too much memory.
We expect the behavior of the server to fit most of UNIX applications requirements, but in some
cases we believe that the scheme we use will not avoid thrashing situations, some futher work
will be done to detect and solve these situations.
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