
CS/TR-92-10

CHORUS/MiX, a Distributed UNIX,

on Multicomputers

Bénédicte Herrmann (LIB, Université de Franche-Comté - ONERA)
Laurent Philippe (LIB, Université de Franche-Comté - Chorus systèmes)

Chorus systèmes, 6, avenue Gustave Eiffel,
F−78182, Saint-Quentin-en-Yvelines (France). Tel: +33 1 30 64 82 00,

E-mail: lau@chorus.fr

Abstract: Currently available multicomputers are generally featured with sim-
ple operating system kernels offering mostly communication primitives. The
CHORUS technology has been designed for building "new generations" of open,
distributed, scalable operating systems. It is based on a small kernel onto which
operating systems are built as sets of distributed, cooperating servers. This paper
presents a description of CHORUS/MiX on multicomputer, a first step in imple-
menting a UNIX interface suited for this architecture. A discussion of the port on
an experimental platform is given. Finally, we describe an IMS T9000-based
version of CHORUS and explain how T9000-based multicomputers will benefit
from the experiences of the port on the experimental platform.

Keywords: Distribution, UNIX, multicomputers, CHORUS, Transputer

1. Introduction

Multiprocessor architectures tend to be the current answer for the design of high performance com-
puters − supercomputers and mainframes. Instead of designing costly special purpose processors,
standard microprocessors are used, the new development costs being concentrated on the intercon-
nection system. Two main architectures are being experimented: shared-memory multiprocessors
(SMP) and loosely-coupled multiprocessors, called multicomputers in this paper.

In order to allow the widest and easiest use of these machines it is necessary to adapt standard
operating system kernels (eg. UNIX) to them. Most of the operating system kernels have been

�������������������������������

In: Proceedings of Transputer’92, Arc et Senans, France, May 20-22, 1992

 UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S.A. and other countries.

 Chorus systèmes, 1992 − 1 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

adapted to the support of SMP’s. A single, parallelized instance of the operating system kernel tran-
sparently balances the users load among the processors. The user is generally not aware of the mul-
tiprocessor nature of the machine: the parallelized kernel offers a single system image. For those
users who need to master the parallelism, for example scientific computing applications, new
scheduling techniques (eg. gang scheduling[Black90]) have been designed.

Unfortunately, these systems currently suffer from scalability problems. The I/O and memory buses
become the bottlenecks of the system, which must be balanced by costly memory (caching) archi-
tectures. From the software point of view, the ability to support a large number of processors
implies a very high degree of kernel parallelization, which is hard and costly to achieve. Current
systems are generally limited to a few ten’s of processors.

On the other hand, multicomputers offer much more promising scalability properties. Based on high
performance networks, they use network topologies (mesh, hypercubes, etc) such that additional
processors always come with additional network bandwith. In addition the I/O load may be shared
by independent nodes. These architectures promise an interesting price/performance ratio. Some
currently available systems include thousands of processors. On such multicomputer architectures,
each node runs an instance of the operating system kernel. These differents instances communicate
via message passing.

Currently available multicomputers are generally featured with very simple operating system ker-
nels (ex: NX[Pier88] on iPSC/2, Helios[Garn87] on transputers) offering mostly communications
primitives. Services such as user interaction and device access are provided via separate "host"
computers. The multicomputer is generally used as a high performance co-processor connected to
workstations and mainly for scientific computing. In order to extend the use of these promising
architectures − for example to transactionnal systems − standard operating systems must be adapted.
A fast approach is to adapt currently available network operating systems, providing distributed
services such as distributed file systems (eg. NFS) and remote execution facilities (eg. rsh). How-
ever, we believe that this is not sufficient. As well as SMP’s, multicomputers must provide a single
system image to their users. In addition, the operating system must be flexible enough to be adapted
to the different natures of the nodes of the multicomputer (compute nodes, I/O nodes).
We believe that the CHORUS microkernel technology is a strong basis for achieving these goals.

In section two we define more precisely the characteristics of multicomputers as well as the main
requirements for their operating systems. In section three, we briefly outline the CHORUS micro ker-
nel technology and its application to the construction of a modular UNIX system: CHORUS/MiX. In
section four, we discuss the port of CHORUS/MiX on a multicomputer plateform − the iPSC/2.
Finally, we describe some of the issues involved in porting CHORUS/MiX on the T9000[Inmos91].

2. Distributed memory multiprocessor

We are interested in distributed memory multiprocessor machines because this type of architecture

�������������������������������

 CHORUS is a registered trademark of Chorus systèmes.

 Chorus systèmes, 1992 − 2 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

offers more scalability and fault-tolerance than tightly coupled multiprocessors. Indeed each com-
pute unit (ie: the processor and memory) is independent and shares less hardware resources with
others separate units.

2.1 Definitions related to multicomputers

We will call a multicomputer, a totally distributed memory multiprocessor machine. We define a
node as a set of tightly coupled processors and their supporting environment. So, a multicomputer
is a set of nodes interconnected via a uniform scalable network.

We will call the interconnection network of the multicomputers an internal network (intnet) and the
network used to connect the multicomputer to other machines (eg: Ethernet for workstations) an
external network (extnet).

Disk

Display

Memory

MemoryMemory

Memory

Processors

Processors Processors

Processors

intnet
intnet

intnet
intnet

extnet

Figure 1. − Multicomputer architecture

In a multicomputer, we define two models of nodes. A basic node includes the processors with
their memory and a connection to the internal network. A specialized node consists of a basic node
plus some devices. In multicomputers, each node is independent in the sense that it has its private
memory, its own interrupt control, etc., which cannot be handled or accessed by a remote processor.
Therefore all the requests to a device have to be handled on the specialized node responsible for that
device and nowhere else. The processors may only exchange data by messages.

Examples of multicomputers are:

� the iPSC/2, an hypercube architecture marketed commercially by Intel. Each node is based on a
i386 processor and a communication hardware. It scales from 4 to 128 nodes.

� transputer based machines like the T-node[Telmat89] from Telmat. Each node is based on a T800
from INMOS and uses its communication channels to exchange messages. The nodes are inter-
connected through the C100 routing module, providing a reconfigurable network. T-nodes are
basically 16 nodes multicomputers.

� nCube machines: the nCUBE 2[nCUBE90] is an hypercube scaling from 8 to 8096 processors.
The nodes are based on a home-made processor and communicate via a home-made communi-
cation hardware.

 Chorus systèmes, 1992 − 3 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

2.2 Operating systems requirements

Currently multicomputers are mainly used for specialized applications (for example mathematical
simulation). We can compare the actual use of the multicomputers to batch execution on earlier
computer: users must develop their code in a workstation environment (because of the ease of use),
then, in order to execute it, they must statically allocate a sub-set of the nodes and download binary
programs to the multicomputer. This sub-set cannot be shared with other users, in effect these
machines are not real multi-users machines.
Further, applications developed on multicomputers manage their own distribution, placing each task
on each node. These applications are architecture dependent. For instance, if an application runs on
sixteen nodes it will not benefit from a thirty two nodes machine.
Generally, there are only a few facilities on the multicomputer to manage the needs of general pur-
pose applications such as input and output. It is very important for the user to find on the multicom-
puter an interface as close as possible to his workstation interface because the user is familiar with
this interface and will use it easily. We believe that multicomputers may be interesting as general
purpose machines. Yet, users may not accept these new machines if they do not find equivalent
facilities or tools as on their workstations. Users want to gain in compute power without losing in
programming time, energy and comfort. These requirements must be taken into account by the
operating system developers because they are crucial for effective use of multicomputers. Indeed
the operating system is the base on which the environment for programming and debugging appli-
cations will be developed.

To satisfy these requirements we need an operating system which integrates distribution and pro-
vides a standard interface. On these topics we distinguish three main levels of evolution for the
operating system functionality:

� The first level of evolution is to provide the same kind of interface on a multicomputer as on a
workstation: provide a uniform, standard operating system interface to support a large number
of existing tools (eg: databases, graphics interfaces), manage the devices attached to the special-
ized nodes and provide access to remote resources (files, terminalsetc). In fact, the multicom-
puter may be seen, from an operating system point of view, as a set of workstations intercon-
nected via a network. For instance this is the level of functionality provided by UNIX on a set of
interconnected workstations. This level does not provide transparent access to resources, so the
user must master all the distribution of the resources of its application which is, in this case,
location dependent. On the other hand the current UNIX technology does not provide a modular
implementation so all the kernel must be loaded on all the nodes even if all the code will not be
used (for example device management on basic nodes).

� The second level of evolution extends these interfaces to deal with distribution and to help the
user to benefit from the underlaying architecture without too much difficulty. It must provide:
− transparent access to the resources (ie: devices, memory, etc) available on one node by the

other nodes. Actually, the access to the processor is not transparent and the user knows
which process executes on which node.

− parallel execution facilities. For instance simple communication facilities (like send and
receive) or remote execution.

− new tools which will help for the development and debug of distributed applications. New
debuggers are needed because distributed applications cannot be debugged with standard
tools.

Further the architecture of the operating system must be modular to adapt to the configuration of
each node. This level of evolution allows users to write location independent applications. It

 Chorus systèmes, 1992 − 4 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

has been reached by some operating systems as AMOEBA[Tanen90], CHORUS[Rozi88]. or
MACH[Acce86]. Yet the distribution of the application still has to be mastered by the user.

� The third level of evolution is to adapt the operating system to the architecture. We believe that
the operating system must allow users to develop applications without taking into account the
architecture of the multiprocessor. Thus they can develop architecture independent applications.
To achieve that, the interface must provide a single system image of the multicomputer. More-
over the operating system must be configurable: on each node we just need the part of the
operating system which manages the local resources. We must also integrate new possibilities
such as fault tolerance because the probability of a failure is greater with hundreds or thousands
of nodes than in a workstation.

UNIX is one of the most widespread operating system interface used on workstations and networks.
For this reason it may be a good choice as operating system interface. Unfortunately, the UNIX

technology is not designed to easily support the multicomputer architecture. Its primary goal was to
manage centralized architectures, and distribution was not integrated in the basic concepts of UNIX.
The CHORUS/MiX system provides a standard UNIX interface but integrates distribution concepts at
a low level.

3. CHORUS/MiX V3.2

The CHORUS technology is designed to support distributed architectures by integrating the com-
munication at the kernel level and by implementing a distributed virtual memory. The actual state
of CHORUS corresponds to the second level of evolution on operating system. Moreover CHORUS is
well suited to implement the third level of evolution.

3.1 Overall Organization

A CHORUS system is composed of a small-sized Nucleus and a number of System Servers. Those
servers cooperate in the context of Subsystems (e.g. UNIX) to provide a coherent set of services and
interfaces to their ‘‘users’’ (application programs). Thus CHORUS/MiX[Herr88] is made of the
Nucleus and a UNIX subsystem. It provides binary compatibility with UNIX SYSTEM V3.2 (SCO).
The physical support for a CHORUS system is composed of a set of sites, interconnected by a com-
munication network (i.e., an external network or internal network). In a multicomputer each node
is equivalent to a site. There is one CHORUS Nucleus per site.
The CHORUS Nucleus manages, at the lowest level, the local physical computing resources of a
‘‘computer’’: allocation of local processor(s) (controlled by a real-time multi-tasking executive),
local memory (managed by a virtual memory manager), external events − interrupts, traps, excep-
tions − (dispatched by a supervisor). The CHORUS Nucleus also provide global services by imple-
menting basic abstractions.

3.2 The CHORUS Nucleus basic abstractions

The actor is the logical unit of distribution and of collection of resources in a CHORUS system. An
actor defines a protected address space supporting the execution of one or more threads (lightweight
processes always tied to only one actor) that share the address space of the actor. Any given actor is
tied to a site.
CHORUS offers message-based facilities (referred to as IPC) which allow any thread to transparently

 Chorus systèmes, 1992 − 5 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

communicate and synchronize with any other thread, on any site. The CHORUS IPC permits threads
to exchange messages either asynchronously or by synchronous Remote Procedure Call.

Thread
Port

Actor

Site

Message

Figure 2. − Basic abstractions

A message is an untyped string of bytes composed of a (optional) body and an (optional) annex.
Annex size is fixed (64 bytes currently). Body size is variable. Message passing is tightly coupled
with the virtual memory mechanism to enable data transmission without copy. Messages are
addressed to intermediate entities called ports.

The CHORUS memory management service[Abro89a] provides separate address spaces, associated to
actors, called contexts. The data of a context is a set of non-overlapping regions, which form the
valid portions of the context. Regions are mapped (generally) to secondary storage objects, called
segments. Segments are managed outside of the Nucleus, by external servers called segment
mappers.

3.3 The UNIX subsystem

UNIX facilities may logically be partitioned into several classes of services according to the dif-
ferent types of resources managed: processes, files, devices, pipes, sockets. The design of the struc-
ture of the UNIX Subsystem in CHORUS, called CHORUS/MiX, puts emphasis on a clean definition
of the interactions between these different classes of services in order to provide a true modular
structure. Thus providing general and network-transparent access to resources such as uniform file
and device access.

Each type of system resource (ie. process, file, etc.) is isolated and managed by a dedicated system
server. Interactions between these servers are based on the CHORUS IPC.

Several types of servers may be distinguished within a typical UNIX Subsystem: the Process
Manager (PM), the File Manager (FM), the Device Managers (DM) and the IPC Manager for the
system V IPC. This modular architecture allows the UNIX subsystem to be adaptable, as shown in
figure 3.

 Chorus systèmes, 1992 − 6 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

Nucleus

process

UNIX

Nucleus

process

UNIX

Nucleus

process

UNIX

PMPM

PM FM
DM DM

process process

network

Figure 3. − CHORUS/MiX configuration

3.4 Functional extensions to the UNIX interface

CHORUS provides extensions to the UNIX interface to take benefit of the distributed nature of the
system. Such access is not provided by directly invoking the Nucleus but rather through the UNIX

Process Manager, in order to eliminate inconsistencies.

	 The naming facilities provided by the UNIX file system have been extended to interconnect file
systems and provide a global name space.

 The basic extension to process management is to enable remote creation or execution of
processes.

� Processes can use the CHORUS IPC mechanisms to communicate transparently over the net-
work.

� Multiprogramming within a UNIX process is possible with multi-threaded UNIX processes.
These extensions provide support for programming parallel applications; in the local case (multi-
threaded processes) as in the distributed case (processes communicating by exchange of messages).

The following section describes how CHORUS/MiX V3.2 has been ported on the iPSC/2 multicom-
puter.

4. CHORUS on multicomputers

The first stage of our project provides the same view of the CHORUS/MiX subsystem on a multi-
computer as on a set of interconnected workstations. Our future work will be to develop a distri-
buted UNIX interface suited for multicomputers.

4.1 Mapping of the multi-server model on a multicomputer

There is one CHORUS nucleus on each site, so one nucleus on each node of the multicomputer. On
this base we build the UNIX subsystem using the modularity of the system to load only the neces-
sary servers on the appropriate nodes. The Process Manager implements the UNIX interface. There

 Chorus systèmes, 1992 − 7 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

is a PM on each node providing a UNIX interface. However, we do not need to have one PM on
each node, for example, performance of requests on files will be greater if the specialized node in
charge of the disk does not have to run processes. On the specialized nodes we load the server
which manages the local device, for instance a File Manager if the node manages a disk.

However, these considerations are general and must be tuned for each multicomputer.

4.2 An example of multicomputer: the iPSC/2

The iPSC/2[Close88] is a hypercube architecture marketed commercially by Intel Scientific Super-
computer Division. A basic node of the iPSC/2 is composed of a processor (Intel 80386) with 12
Mbytes of RAM (can be expanded to 16 Mbytes) and a DCM (Direct Connect Module) communi-
cation module, reachable by the CPU via advanced DMA. This communication module allows con-
nection with up to seven basic nodes and one specialized node. Specialized nodes are basically
nodes with an SCSI interface which supports disks, network (Ethernet) or other devices. The hyper-
cube structure is composed only of basic nodes, specialized nodes may be added after.

Host
node 0

node 1

node 2

node 3

node

SCSI RAM
12 Mbytes

CPU

386

FPU
ADMADCM

routeur

unused
node 0

node 3

I/O
Disk

: DCM connection

Figure 4. − iPSC/2 Architecture

The nodes can communicate with each other via the DCM. Routing between any two nodes is
automatic and does not require CPU intervention. Connected to node 0 via a DCM, there is a host
station (PC/AT) which is used to download the programs to the nodes and centralize the informa-
tion coming from the nodes. This offers a very centralized implementation of the hypercube

 Chorus systèmes, 1992 − 8 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

because all the applications must pass through the host to reach the nodes, after which they are
driven from the host.

4.3 CHORUS/MiX on iPSC/2

To get a platform to investigate single system image functionality we have ported CHORUS/MiX on
the iPSC/2. In the following sections we concentrate on some of the more important issues that we
addressed when carrying out this port.

4.3.1 Nucleus

The traditional CHORUS testbed is a set of COMPAQ’s interconnected via a network. So the
CHORUS nucleus is already running on Intel 386 based machines. Most of the nucleus code has been
reused, we have just changed some machine dependent parts of the nucleus: interrupt management,
site number allocation, etc.

4.3.2 Communication and protocols

The communication part of the nucleus is independent of the network. It implements only local
communications. When sending a message to a remote site the nucleus locates the destination site
and accesses a communication server, called network protocol (NP). After adding the necessary
headers to the message, the NP server calls the network driver. We can have several NP on the
same site if needed.

Driver
Kernel

message

Driver

2

2

1

1

message

external
network

internal
network

NP NP

Figure 5. − Message send

We have implemented a network protocol NP1 dedicated to the iPSC/2 network. To optimize the
exchange of messages we avoid copying data, using the hardware features and the memory manage-
ment services of the CHORUS nucleus. In this case the protocol has been implemented in the same
actor as the driver, mainly for performance reasons.

From the user point of view the host is a gateway to the hypercube and in particular the connection
between the host and node zero. Unfortunately the host does not run CHORUS (we cannot use the
CHORUS protocol) and uses the NX protocol (NX is the protocol of the native system) to communi-
cate with node 0. So we have simulated the NX protocol in a network protocol, NP2, which
translates NX messages into CHORUS messages. NP2 is implemented on node zero. It provides

 Chorus systèmes, 1992 − 9 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

communication between the external network and the iPSC/2. Actually this is the only way to
interact between the hypercube and the "outside" world, in particular to exchange data.

All the communication used at this moment in the cube is actually implemented in the same actor:
two protocols and two drivers. Indeed the two protocols share the same hardware structures and
interrupt handling thus they cannot be separated. Yet their code and data are mostly distinct so we
may have some nodes which communicate with the host, others which do not.

4.3.3 CHORUS/MiX

As noted in section 4.1, when mapping CHORUS/MiX onto each hypercube node, we can take
advantage of CHORUS modularity and only use the required server.

4.3.3.1 The Process Manager

The Process Manager (PM) handles all the system calls issued by a process. The PM dispatches the
requests to the corresponding servers. For instance on a read(2) request, the PM generates a mes-
sage and sends it to the File manager which will handle the request. Thus, due to the transparency
of the IPC, the FM may be located on a remote site.

4.3.3.2 The File Manager

On a multicomputer we need at least one console and one disk for all the nodes to implement the
UNIX processes semantics. Yet one is sufficient because all the PMs can access the same File
Manager.

Our iPSC/2 configuration has a specialized node with disks. But these disks cannot be used by the
standard CHORUS/MiX File Manager because they are not in standard UNIX format. As the purpose
of our work is not to develop a file server, we choose to use the disk of the host which is already in
a UNIX format. The problem with this disk is that the host does not run CHORUS. So we cannot run
the File Manager on the host.
Generally the file management part of the FM accesses the disk management part using blocks: it
reads or writes a disk block pointed out by a number. To solve our problem we disassociate[Arm91]

the file management (path, inodes, etc) which runs on a node from the disk management (block
access) which runs on the host in a UNIX process. The FM and the host process communicate using
the NP2 network protocol.
On a disk access, the FM sends the request to a process on the host. The process performs the
request on the disk of the host: it reads or writes the designated block. Then it sends the answer to
the File Manager. In fact, the host process is used as a disk I/O controler, I/O requests being issued
using NP2 messages.

4.3.3.3 Device management

The only usable ttys of the iPSC/2 are the host ttys as we do not have any specialized node with a
display.
In CHORUS the Device Manager is mainly used to implement the lines disciplines and display
management. In our case the display management is already done on the host by UNIX. So we pro-
vide just the basic characters display functions and the rest is done by a process on the host. Single

 Chorus systèmes, 1992 − 10 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

character device driver has been implemented in the FM which communicate with dedicated
processes on the host in order to access the host ttys.

As one can access every ttys, users running X windows on the host can use as many windows as
they want. As in standard UNIX an application can display traces in different windows by opening
different devices. So different processes can display traces in different windows.

4.3.4 The CHORUS/MiX configuration on the iPSC/2

The first lesson we learned from this implementation is the way to configure the UNIX subsystems
on the nodes.

We have explained already how the modularity of the CHORUS/MiX subsystem is used to imple-
ment it on multicomputers. On node 0 − which is seen as a specialized node in this case − there are
two protocols implemented in the communication manager (intnet protocol plus NX protocol). We
choose node 0 because it is physically closer to the host than the other nodes. The File Manager is
also running on node 0 for performances reasons because it uses the NX protocol. Thus the File
Manager is on the same site as the NX protocol, to access files on the host.

Nucleus Nucleus

NucleusNucleusNx protocols

UNIX

HOST

Node 0 Node 1

Node 2 Node 3

PM

PM PM

PMFM

appli.

appli. appli.

appli.P
roc.

P
roc.

P
roc.

Figure 6. − CHORUS configuration on the iPSC/2

4.3.5 What are the benefits of this UNIX interface?

The interface provides standard UNIX tools on the iPSC/2, for example users can run a shell, com-
pile using cc or debug with gdb. Moreover these tools are run on CHORUS/MiX without being
recompiled, thus benefiting from binary compatibility with UNIX.

Users benefit also from the distribution extensions, both at the shell level and at application

 Chorus systèmes, 1992 − 11 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

programming level.
At the shell level the user can execute his commands on a remote site using the remex command:

remex -s[site number] command
This command keep the environment of the process. For example this command can be used to
execute, from the user shell, a new shell on another node. Moreover if the user redirects traces he
may have two shells, on two nodes, each using its own window to display traces. This facilitates the
debugging of distributed applications.
Users can also use the distributed signal management to remotely control their processes. For
instance a process can be killed on a remote node without using remote execution.

At programming level, the extended UNIX interface allows the user to write parallel applications.
Each CHORUS/MiX process system context has a default site execution number. This site number
can be changed using the csite(2) command. On exec(2) the PM will use this site number to set the
execution site: if the default site number does not correspond to the local site number the PM will
perform a remote execution. So we can write parallel applications using csite(2), fork(2) and
exec(2). The master process which starts the application sets the execution site for its children
which will be executed on remote sites. Then all these processes can communicate using the
CHORUS IPC facilities.
Moreover this application can be debugged first locally just by setting all the execution site
numbers of the children processes to the local node number. Thus we will debug the application
locally using a standard debugger. Most of the bugs can be fixed this way, yet not all because the
application will run in pseudo parallelism. To distribute the application we will just set the execu-
tion sites of the children processes to remote sites.

4.4 CHORUS suited for multicomputers

The CHORUS implementation of UNIX is specially suited to multicomputers because of its modular-
ity and adaptability. It provides a clever management of the multicomputer resources. Moreover it
extends the UNIX interface to benefit from the distribution.

This UNIX interface allows the user to execute parallel applications, and is therefore suited to take
advantage of a multicomputer architecture. It also provides the same level of functionality as NX
and, in the same time, a full UNIX interface.

Applications can be tested on a single machine, and then distributed throughout the network,
without any modification necessary to adapt to a new configuration.

We have been using the current CHORUS/MiX V3.2 as a platform to experiment with new mechan-
isms required to extend the MiX interface to provide a single system image interface.

5. CHORUS on T9000 based multicomputers

In this part we will present the port of the CHORUS nucleus on the T9000[Albin91], first. Actually this
port has not been realized since the T9000 is not available but the nucleus run on a T800 based
simulator of the T9000. Then we will describe how we will use our experience of multicomputers to
port CHORUS on transputers based multicomputers.

 Chorus systèmes, 1992 − 12 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

5.1 Porting CHORUS onto the T9000

In order to port the CHORUS operating system onto a new hardware architecture the Nucleus must
be adapted in order to offer the same set of essential generic services to the higher-level components
of the system. These generic services are defined by a clear functional Nucleus interface and by a
description of the basic abstractions exported by the Nucleus.

5.1.1 CHORUS threads and T9000 Processes

CHORUS threads are implemented as independent T9000 processes. Threads in supervisor mode are
mapped onto L-processes and run without memory protection or address translation. Each of these
L-processes is associated with a T9000 trap-handler which is responsible for monitoring the traps
and exceptions caused by the thread.

Threads in user mode are mapped onto P-processes, and run in a protected address space. Each user
thread is controlled by a private stub-process, which represents the supervisor mode of the thread.

5.1.2 Scheduling

The CHORUS priority is not to be confused with the two-level priority scheme managed by the
T9000 hardware scheduler, hereafter referred to as the low- or high priority. T9000 processes
implementing CHORUS threads are running at low-priority, in order to allow for interrupt preemp-
tion. The wider 255-level priority is managed internally by the Nucleus on top of the hardware
low-priority.

The context switch mechanism is implemented using a combination of the T9000 hardware
scheduler and semaphore atomic operations. For the purpose of scheduling, each thread is associ-
ated with a private T9000 semaphore. This scheme has the advantage that there is no need to save
and restore any context information since the T9000 hardware has built-in capabilities for managing
the scheduler and semaphore hardware queues. Instruction and stack pointers are automatically
updated.

5.1.3 Hardware Mechanisms: Traps, Exceptions and Interrupts

Traps and exceptions may occur while the currently running thread is in user or supervisor mode. In
the former case, the control is passed to the stub process controlling the thread. In the latter case, the
trap handler connected to the thread is responsible for servicing the event. Interrupt sources - timers,
event pins and communication links - are monitored by dedicated high-priority processes. These
processes, named vectors, wait for events to occur on the various sources. When an interrupt source
is triggered, the corresponding guardian is awakened and preempts the currently running thread.
The vectors and the generic part of the interrupt handlers implement the part of the supervisor not
covered by the stub and trap handler processes.

5.1.4 Memory Management

The protected mode offered by the T9000 hardware, with its four per-process independent logical
address regions is the base on which the region and context abstractions are implemented. In this
model, each thread, if running in protected mode, is assigned four T9000 logical address regions.

 Chorus systèmes, 1992 − 13 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

The memory management module of the Nucleus must offer a fixed interface to the higher-level
parts of the system (region creation and duplication, segment mapping, etc). Because of the T9000
memory architecture characteristics and for efficiency reasons, the full CHORUS memory manage-
ment module has been re-designed. As an example, it was not possible to implement advanced tech-
niques like copy-on-write or -reference. Regions are loaded or copied entirely at creation time. The
buddy system has been adapted for speeding up memory allocation in some cases (like for finding
small communication buffers). Relocation algorithms are used to maintain a low level of fragmen-
tation, and are implemented on top of the very efficient block move operations allowed by the
T9000.

5.1.5 CHORUS IPC

Remote communications are implemented on top of the T9000 Virtual Channel mechanism. Dedi-
cated vectors act as intermediate agents between the NDM and the actual physical links. This
design provides fast response for communication primitives and offers a consistent interface to the
portable communication module of the Nucleus, which can consider communication links as nor-
mal interrupting devices.

The CHORUS Nucleus IPC module contains a dedicated routing component, the RSM (Routing Site
Module), and a reliability component, the FU (Fragmentation Unit), for providing the adequate
level of communication semantics to the upper layers.

Routing and location services at the lowest level as well as packet fragmentation are automatically
handled by the T9000 Virtual Channel Processor. More complex routing schemes are also managed
by the C104 network at the hardware level. The adaptation of the CH IPC on the T9000 takes
advantage of the high-reliability and automatic routing capabilities of the hardware.

5.2 Adapting CHORUS/MiX on T9000 based multicomputers

Most of the experiences acquired in the port of CHORUS to the iPSC/2 are reusable on all multicom-
puter platforms. The main reason is that the Nucleus provides the same interface, regardless of the
processor type. There are three main topics on which our experience in porting CHORUS/MiX on
the iPSC/2 has been useful:

— booting the kernel on the multicomputer. Generaly multicomputers are initialized by one host
(ie. node or workstation). This implies that the schemes used to load the operating system on the
nodes are equivalent on multicomputers.

— implementing the IPC part of the kernel. Although the communication hardware is not the same
on all multicomputers, the structure of the communication servers are the same. It means that
the drivers will be differents but the protocols are equivalent (ie. frame).

— adapting the multi-server model of CHORUS/MiX/MiX to the multicomputer characteristics.
The experience acquired in configurating the CHORUS/MiX/MiX sub-system on each node (ie.
starting the needed servers on one node) will be re-used in the implementation of
CHORUS/MiX/MiX on a T9000 based multicomputer.

Moreover, most of the issues encountered during the port to the iPSC/2 will be the same for other
architectures. For instance, not all multicomputers have disks and if the host does not run CHORUS,
our solution (described in 4.3.3.2) can be used to implement a virtual disk. The same can be use for

 Chorus systèmes, 1992 − 14 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

device and network management.

6. Conclusion

In the actual state of our project we have addressed some of the issues raised by the design of the
operating system needed for multicomputers. On that topic, we can conclude that micro kernel tech-
nology is well suited for multicomputers; further the CHORUS implementation of UNIX based on the
micro kernel model is easily adapted to multicomputers. Actually the current state of the project
does not cover all the needs of operating systems dedicated to multicomputers.

The CHORUS/MiX system is further being developed to provide what has been termed single site
semantics (SSS). This will make it possible to create the illusion of UNIX running on a single pro-
cessor while taking advantage of the availability of a number of loosely coupled processors. The
IMS T9000 Transputer will be one of the first processors on which CHORUS/MiX SSS will be
implemented.

7. References

[Abro89a] Vadim Abrossimov, Marc Rozier, and Michel Gien, ‘‘Virtual Memory Management in
CHORUS,’’ in Lecture Notes in Computer Sciences, Springer-Verlag, Berlin, Germany,
(18-19 April 1989), p. 20.

[Acce86] Mike Accetta, Robert Baron, William Bolosky, etc., ‘‘Mach: A New Kernel Founda-
tion for UNIX Development,’’ in Proc. of USENIX Summer’86 Conference, Atlanta,
GA, (9-13 June 1986), pp. 93-112.

[Albin91] Lawrence Albinson& all., ‘‘Unix on a loosely coupled architecture: the CHORUS/MiX
approach,’’ in , (September 91), pp. 321-359. CS/EX-91-49

[Arm91] Francois Armand, ‘‘Offrez un Processus à vos Drivers!,’’ in Proc. of AFUU’91 Confer-
ence, Paris, France, (91/01), pp. 16. CS/TR-91-8

[Black90] David L. Black, ‘‘Scheduling and Resource Management Techniques for Multiproces-
sors,’’ in , Carnegie Mellon University, Pittsburgh, PA, (July, 1990), pp. 111. CS/EX-
91-78

[Inmos91] Inmos, ‘‘The T9000 transputer products overview manual,’’ in First Edition, Inmos
limited, (1991).

[Close88] Paul Close, ‘‘The iPSC/2 Node architecture,’’ in Technical Report, Intel Scientific
Computers, Portland, OR, (88/06), pp. 43-50.

[Garn87] N. H. Garnett, ‘‘HELIOS - An Operating System for the Transputer,’’ in Proc. of
OUG-7, 7th occam User Group Technical Meeting, Traian Muntean ed., IOS, Greno-
ble, France, (14-16 September 1987), pp. 411-419.

[Herr88] Frédéric Herrmann, François Armand, Marc Rozier, Michel Gien, etc., ‘‘CHORUS, a
New Technology for Building UNIX Systems,’’ in Proc. of EUUG Autumn’88 Confer-
ence, EUUG, Cascais, Portugal, (3-7 October 1988), pp. 1-18.

[Intel87] Intel, ‘‘iPSC/2 System,’’ in Product and Market Information, Intel Scientific Comput-
ers, Portland, OR, (87/08), pp. 23.

 Chorus systèmes, 1992 − 15 − May 1992

Chorus systèmes CHORUS/MiX on Multicomputers CS/TR-92-10

[nCUBE90] nCUBE, ‘‘NCUBE 26400 Series Computer,’’ in , Technical overview, Beaverton, OR,
(1990), pp. 17.

[Pier88] Paul Pierce, ‘‘The NX/2 Operating System,’’ in , Intel Scientific Computers, Portland,
OR, (88/06), pp. 51-57. CS/EX-88-417

[Rozi88] Marc Rozier, Vadim Abrossimov, François Armand, Ivan Boule, Michel Gien, etc.,
‘‘CHORUS Distributed Operating Systems,’’ Computing Systems Journal, vol. 1,
no. 4, The Usenix Association, (December 1988), pp. 305-370.

[Tanen90] Andrew S. Tanenbaum, etc., ‘‘Experiences with the Amoeba System Distributed
Operating System,’’ Communications of the ACM, vol. 33, no. 12, (December 1990),
pp. 46-63.

[Telmat89] Telmat informatique, ‘‘T-node overview,’’ in , (juin 1989), pp. 1.

 Chorus systèmes, 1992 − 16 − May 1992

CONTENTS

1. Introduction . 1

2. Distributed memory multiprocessor 2
2.1 Definitions related to multicomputers 3
2.2 Operating systems requirements 4

3. CHORUS/MiX V3.2 . 5
3.1 Overall Organization 5
3.2 The CHORUS Nucleus basic abstractions 5
3.3 The UNIX subsystem 6
3.4 Functional extensions to the UNIX interface 7

4. CHORUS on multicomputers 7
4.1 Mapping of the multi-server model on a multicomputer 7
4.2 An example of multicomputer: the iPSC/2 8
4.3 CHORUS/MiX on iPSC/2 9

4.3.1 Nucleus 9
4.3.2 Communication and protocols 9
4.3.3 CHORUS/MiX 10
4.3.4 The CHORUS/MiX configuration on the iPSC/2 11
4.3.5 What are the benefits of this UNIX interface? 11

4.4 CHORUS suited for multicomputers 12

5. CHORUS on T9000 based multicomputers 12
5.1 Porting CHORUS onto the T9000 13

5.1.1 CHORUS threads and T9000 Processes 13
5.1.2 Scheduling 13
5.1.3 Hardware Mechanisms: Traps, Exceptions and Interrupts 13
5.1.4 Memory Management 13
5.1.5 CHORUS IPC 14

5.2 Adapting CHORUS/MiX on T9000 based multicomputers 14

6. Conclusion . 15

7. References . 15

- i -

LIST OF FIGURES

Figure 1. − Multicomputer architecture 3

Figure 2. − Basic abstractions 6

Figure 3. − CHORUS/MiX configuration 7

Figure 4. − iPSC/2 Architecture 8

Figure 5. − Message send 9

Figure 6. − CHORUS configuration on the iPSC/2 11

- ii -

