
Presented at the 4th International Workshop on Network and Operating System
Support for Digital Audio and Video, Lancaster, UK, November 1993

EXTENDING THE CHORUS MICRO-KERNEL TO
SUPPORT CONTINUOUS MEDIA

APPLICATIONS

Geoff Coulson, Gordon S. Blair, Philippe Robin and Doug Shepherd

Department of Computing,
Lancaster University,

Lancaster LA1 4YR, U.K.
e.mail: mpg@comp.lancs.ac.uk

Abstract. Currently, popular operating systems are unable to support the
end-to-end real-time requirements of distributed continuous media.
Furthermore, the integration of continuous media communications software
into such systems poses significant challenges. This paper describes a
design for distributed multimedia support in the Chorus micro-kernel
operating system environment which provides the necessary soft real-time
support while simultaneously running conventional applications. Our
approach is to extend existing Chorus abstractions to include QoS
configurability, connection oriented communications and real-time
threads. The design uses the following key concepts: the notion of a flow
to represent QoS controlled communication between two application
threads, a close integration of communications and thread scheduling and
the use of a split level scheduling architecture with kernel and user level
threads. The paper shows how our design qualitatively improves
performance over existing micro-kernel facilities by reducing the number
of protection domain crossings and context switches incurred.

1 Introduction
A considerable amount of research has already been carried out in communications
support for continuous media over high speed networks. However, much less work
has been done in the area of general purpose operating system support for continuous
media. Typically, end-system implementations have either been embedded in non real-
time operating systems such as UNIX and suffered from poor performance, or have
been implemented in specialised hardware/ software environments unable to support
general purpose applications.

The SUMO Project at Lancaster [1] is addressing this deficiency in the state of
the art by extending a commercial micro-kernel (i.e. Chorus [2]) to support
continuous media applications alongside standard UNIX applications (Chorus already
supports UNIX applications through the provision of a UNIX subsystem). Chorus is
a useful starting point for continuous media support as it includes a number of
desirable real-time features. However, in common with other micro-kernels, it fails to
adequately support continuous media in a number of key areas. First, communication
in Chorus is message based whereas continuous media requires stream-oriented
communications. Second, Chorus offers no quality of service (QoS) control over
communications and only coarse grained relative priority based scheduling to control
the QoS of processing activities. Finally, Chorus does not offer end-to-end real-time
support spanning both the communications and scheduling components.

To overcome these deficiencies we introduce the concept of a ‘flow’. A flow
characterises the production, transmission and eventual consumption of a single media
stream as an integrated activity governed by a single statement of QoS. Realisation of
the flow concept demands tight integration between communications, thread
scheduling and device management components of the operating system. It also
requires careful optimisation of control and data transfer paths within the system.

The rest of this paper is structured as follows. Section 2 provides the background
on the Chorus micro-kernel necessary to understand the rest of the paper. Section 3
describes the programming interface to our multimedia facilities and section 4
presents some examples of its use. Following this, section 5 discusses the
implementation of the multimedia support, concentrating on communications and
scheduling issues. The examples of section 4 are also revisited to illustrate the
qualitative efficiency gains produced by our design over standard micro-kernel
facilities. Finally, section 7 discusses related work in the field and section 8 presents
our conclusions and indicates our plans for future work.

2 Background on Chorus
Chorus, conceived at INRIA, France, is a micro-kernel based operating system which
supports the implementation of conventional operating system environments through
the provision of ‘sub-systems’ (for example a sub-system is available for UNIX
SVR4). The micro-kernel is implemented using modern techniques such as
multithreaded address spaces and inter-process communication with copy-on-write
semantics. The basic Chorus abstractions are actors, threads and ports, all of which
are named by globally unique and globally accessible unique identifiers. Actors are
address spaces and containers of resources which may exist in either user or system
space. Threads are units of execution which run code in the context of an actor. By
default, they are scheduled according to either a pre-emptive priority based scheme or
round robin timeslicing. Ports are message queues used to hold incoming and
outgoing messages. They can be aggregated into port groups to support multicast
messaging and may be migrated between actors. Inter-process communication is
datagram based and supports both request/reply messages (via the ipcCall() and
ipcReply() system calls and one shot messages (via ipcSend() and ipcReceive()).

Chorus has several desirable real-time features and has been widely used for
embedded real-time applications. Real-time features include pre-emptive scheduling,
page locking, system call timeouts, and efficient interrupt handling. Chorus also
incorporates a framework, called scheduling classes, which allows system
implementers to add new scheduling policy modules to the system. These modules are
upcalled each time a scheduling event occurs. Modules impose their scheduling
decisions by manipulating a global table of thread priorities.

Unfortunately, Chorus’ real-time support is not sufficient for the requirements of
distributed multimedia applications, principally because there is no support for QoS
control and resource reservation:-

• although it is possible to specify thread scheduling constraints relative to
other threads, absolute statements of requirement for individual threads
cannot be made,

• the exclusive use of connectionless communications makes it impossible to
pre-specify communications resource allocation.

In addition, Chorus suffers from a lack of communications/ scheduling
integration. This means that there is no way to provide timely scheduling in concert

with communications events as required by end-to-end continuous media
communications. Note, however, that the above limitations are not unique to Chorus:
they are shared by most of the other micro-kernels in current use (e.g. [3], [4]).

3 Programming Interface and Abstractions
To remedy its current deficiencies for real-time continuous media support and real-
time control, we have extended the Chorus API with new low level calls and
abstractions (provided in a user level library called libflow). The new abstractions are
illustrated in figure 1 and described below.

application
programmer's
interface (API)

rtport on device

user level
library

rtport
on
actor

kernel
device

handlers

kernel

application

'actor'
device

Fig. 1. Devices, Rtports and Handlers

rtports: these are extensions of standard Chorus ports which serve as access
points for continuous media communications. Rtports have an associated
QoS which defines constraints on communication. They also provide direct
access to buffers by the application thus minimising copy operations.

devices: these are producers, consumers and filters of real-time data which support
the creation of rtports and provide the memory for their buffers. Devices may
be either drivers for physical devices or Chorus actors containing application
code. Devices can be implemented in either user space or system space.

handlers: these are user defined C functions which manipulate real-time data
coming from or going to an rtport. Handlers are (optionally) attached to
rtports and are upcalled on real-time threads associated with the rtport to
notify the application that data is required/available, and to obtain/ deliver
continuous media data from/to the rtport’s associated buffer.

QoS controlled connections: these are end-to-end communication channels with a
specific QoS. A connection is established between a source and a sink rtport
according to a given QoS specification. Flows are then realised as the
combination of the QoS controlled connection and its associated handlers.
QoS controlled connections are active in the sense that they (rather than the
application itself) initiate data collection and data delivery from/to the
source/sink application respectively through the invocation of handlers.

In addition to these features, our design includes facilities for bounded latency
messaging, exception handling to deal with QoS degradations and means for
dynamically re-negotiating the QoS of an open connection. It also allows pipelines of
‘software signal processing’ modules to be configured for local continuous media
processing. Full details of the continuous media API are specified in [1].

4 Examples of Use
Consider the two applications illustrated in figure 3. The first application (left) is
transferring real-time audio from a kernel managed audio device on one machine to a
kernel managed speaker device on another machine. The second application is using
the same source and sink, but also pipes the data through a real-time software device
implemented in user space.

network
interfaces

user level
library

handlers

kernel

application

connector device

audio
source
device

site 1

audio
sink
device

user level
library

kernel

application

site 2

network
interfaces

user level
library

kernel

application

audio
source
device

site 1

audio
sink
device

user level
library

kernel

application

site 2

Fig. 3. Two Application Scenarios

The first application is implemented by creating rtports on the source and sink
devices and connecting them with a QoS controlled connection. As both devices are in
kernel space and no application specific processing is required, data never crosses the
kernel/ user boundary at either the source or sink machines. Instead, all processing and
copying is performed in kernel space. Nevertheless, the programmer can synchronise
with the flow of data by attaching handlers which are executed on a user mode thread
each time a buffer is sent or received. The user cannot gain access to the rtport’s
buffer because of kernel protection constraints, but he/she knows the precise instant at
which data is sent or delivered.

The second application uses a two stage pipeline with the data piped through user
space via a connector device. The first pipeline stage connects an rtport on the source
device and an rtport on the connector. The second stage connects a second rtport on
the connector and an rtport on the remote sink device. The user’s application specific
code is written into handler functions attached to the connector’s rtport(s). This
arrangement is simple and intuitive for the programmer and yet is still susceptible to
a highly efficient implementation as will be explained in the following section.

5 Implementation Issues
In this section, we discuss scheduling and communication implementation issues
arising from the abstractions already described.

5.1 Scheduling

The scheduling implementation exploits the concept of user level threads wherever
possible to minimise the overhead due to context switches. However, the design also
uses kernel threads running in both user and supervisor modes. To qualify the use of
the term ‘thread’ in the following sub-sections, we introduce the following
definitions:-

• System threads are kernel supported threads which run in supervisor mode,
• Kernel threads are kernel supported threads which run in user mode,
• User threads are implemented in the libflow library and multiplexed on top

of kernel threads.

All three classes of thread are non time-sliced but pre-emptive.
Our real-time scheduling system uses the earliest deadline first policy [5].

However, we do not attempt to provide absolute guarantees that deadlines will be met;
the guarantee QoS parameter is treated as a soft rather than an absolute requirement.
This means that QoS commitments can be revoked when the system becomes
overloaded. It is, however, possible to bound overloads by introducing an admission
algorithm and this would be a simple and natural extension to our current design.

Non real-time threads are scheduled according to standard Chorus policies (e.g.
timesliced) and share whatever processor time is left after real-time threads have taken
their requirements. The real-time thread extensions co-exist with the existing Chorus
thread facilities though the scheduling classes mechanism already described in
���������
	�����

The implementation architecture for real-time thread scheduling is a split level
scheme [6] consisting of a single kernel scheduler (KLS) and multiple co-operating
user level thread schedulers (ULS), one in each actor. Each actor multiplexes user
threads on a small number of kernel threads dedicated to the actor (ideally only one
kernel thread for uni-processors); this is depicted in figure 4.

kernel

user level
library

user level
library

ULS ULS

KLS

Fig. 4. Split Level Scheduling Architecture

The scheme maintains the following invariants with respect to the two types of
scheduler:-

i) each user scheduler runs the user thread in its actor with the earliest deadline,
ii) the kernel scheduler runs a kernel thread which is executing in the actor with

the globally earliest user thread deadline.

The necessary information exchange between the kernel scheduler and the user
level schedulers is accomplished via a combination of shared memory and upcalls
from the kernel [6]. In the implementation of the shared memory area, each kernel
thread (referred to as a virtual processor) has an associated context structure [7] which
contains information such as current user thread context, next runnable thread, global
deadline and next asynchronous event time value. Each context is mapped into kernel
space and used to exchange/share information with the kernel, thus avoiding
unnecessary system calls. For example, the global time value is mapped in each
virtual processor (read only) avoiding the cost of a system call to get the time value.
The global deadline value of each virtual processor and the value of the next
asynchronous event are read on rescheduling operation by the kernel to compute the
next thread to schedule.

The attraction of the split level scheme is that many context switches at the user
level can take place without the need for expensive kernel level context switches. For
example, in an intra-actor pipeline, if a number of the handler threads have deadlines
earlier than any other user thread in any other actor, then these threads can be switched
freely at the user level while their supporting kernel thread runs uninterrupted. This
can result in considerable time savings as context switches at the user level are an
order of magnitude more efficient than kernel context switches.

Connections involving physical, kernel managed, devices use system threads to
obtain data from devices. To ensure fair processor allocation, it is important that these
threads are scheduled consistently with user threads in the various user level actors. To
achieve this, the kernel itself is treated similarly to a user actor for scheduling
purposes and the system threads within it are scheduled analogously to user threads in
real actors. Thus, to schedule system threads, the kernel operates a module equivalent
to a user level scheduler which interacts with the global kernel scheduler in exactly
the same way as real user level schedulers.

Each actor must ensure that it responds in a timely fashion, not only to the
deadlines of its own user threads, but also to externally generated events which
demand service from new threads. The most important such events are:-

i) timer events used to implement pre-emption in user level scheduling,
ii) buffer arrivals from local kernel devices,
iii) buffer or buffer fragment arrivals from the network device, and
iv) indications that a buffer is being delivered to/ sent from a kernel device where

the connection is such that the buffer need not pass into user space.

It is essential that such events are notified to actor in as efficient a manner as
possible. We have already rejected the standard Chorus strategy of having a thread
waiting on a port because of the associated overhead of a synchronisation and context
switch. Our favoured solution is to employ software interrupts whereby the
occurrence of an event causes the actor’s virtual processor to jump to an entry point
in its user level scheduler. When this happens, the user level scheduler saves the
current user thread context and schedules the appropriate user thread to perform the
required action. The software interrupt implementation uses an asynchronous event
list managed by each virtual processor. This list is scanned on each kernel and user
level rescheduling operation and any pending interrupt handlers are executed.

Other researchers have proposed the use of ‘scheduler activations’ [12] for event
notification purposes; these are effectively kernel threads which upcall into the
scheduler when scheduling events occur. The difference between scheduler activations
and software interrupts is that scheduler activations provide a new kernel supported
execution context in addition to an event notification. In contrast, software interrupts
handle the event on the stack of the actor’s single virtual processor. In our
environment, however, scheduler activations suffer from the problem of increased
kernel level concurrency (with the associated overhead of kernel managed context
switches). While this increase in concurrency can be beneficial in a multiprocessor
architecture, its appeal in a uniprocessor design is less clear. The advantage of the
software interrupt mechanism is that it allows an invariant to be maintained of only
one virtual processor per actor. As previously explained, it is optimal for the split
level scheduling scheme to have the same number of virtual processors per actor as
there are real CPUs. If the number of virtual processors exceed this number, the split

level scheduling scheme is compromised as it is not clear on what basis to schedule
multiple kernel threads per actor which are running on a single CPU.

A further issue is the problem of ‘priority inversions’ where a thread with a later
deadline executes at the expense of a thread with an earlier deadline. This situation can
arise in our design when a user thread performs a blocking system call and thus
blocks its underlying kernel thread. As we prefer only one kernel thread per actor (our
scheduling scheme is optimal with this constraint), other user threads in the same
actor will be unable to execute while the blocking call is extant - even if they have
the globally earliest deadline. Scheduler activations would solve this problem by
injecting a new execution context whenever the actor’s kernel thread blocks (but at the
expense of an undesirable increase in kernel level concurrency as discussed above).
Our favoured solution is to employ non blocking system calls [7]. These calls return
immediately and thus allow the calling kernel thread to resume acting as a virtual
processor for user level threads (the result of the call will eventually be notified by a
software interrupt as discussed above). This strategy enables the scheduling invariants
to be maintained whilst avoiding extra kernel level threads per actor.

5.2 Communications

General Case. Connections between devices on different machines are implemented
via a connection oriented transport protocol specifically designed to support QoS
controlled communications. The protocol was designed and implemented as part of an
earlier project at Lancaster [8]. It supports QoS parameterisation at connection set-up
time and also monitors QoS and reports on degradations. It is possible to dynamically
renegotiate QoS levels on the basis of these reports. The protocol uses a rate based
scheme [9] for flow control whereby sources and sinks negotiate a mutually
acceptable transfer rate at connection set-up time. This allows data to flow at a
smooth rate, which is important for continuous media, and also permits responsive
back pressure to be applied when the sink runs out of buffers. Rate based flow control
has two further advantages. First, is lightweight and permits higher throughput than
schemes based on windowing. Second, it decouples flow control from error control so
that connections which do not require error control do not need to pay for it. A final
point is that, as recommended by researchers in the area (e.g. [10]), the
communications design uses no multiplexing in the protocol stack above the link
layer.

The transport protocol can run in either supervisor mode or user mode.
Supervisor mode is appropriate for connections involving kernel supported physical
devices as both data transfers and execution for these connections are confined to
supervisor memory space. However, user mode operation is preferred for connections
involving actor devices as this results in a simplification of the scheduling scheme. In
user mode operation, the network card is accessed through kernel calls to a device
driver which provides an interface at the link-layer, and the protocol itself is
implemented in the libflow user level library. It is essential for efficiency that the
user mode protocol implementation the number of kernel calls per user level buffer.
To achieve this, the user mode implementation batches data to minimise transfers to
the network card and also minimises memory allocation calls by maintaining its own
buffer cache. Experience will tell if these techniques are sufficient but results reported
in [11] are encouraging.

To realise the active semantics of connections, connections have dedicated threads
at each end. These are user threads for connections whose end rtports are implemented

in libflow, and system threads for those whose rtports are kernel managed. The source
thread is responsible for continually executing the user handler, obtaining data (either
from the handler or directly from a physical device), and executing the transport
protocol. The sink thread operates analogously; it is awakened when the full set of
link-layer packets making up a user level buffer have been received, and then executes
the transport protocol and delivers the data either by calling a user handler or by
delivering data directly to a device. Both threads are scheduled to run periodically so
that the connection’s rate guarantees can be upheld.

Note that the user library transport implementation and handler mechanism
simplify the task of scheduling in two respects. Firstly, the deadline and required CPU
time for the processing of each continuous media buffer is known in advance. The
former is obtained implicitly from the QoS specification of the connection; the latter
is deduced by adding the transport and handler execution times. Secondly, the handler
scheme eliminates any need for synchronisation between the application and a distinct
transport entity: a single seamless thread of execution subsumes both these activities.

Opt imisat ions . A number of important optimisations are possible if
communication is between devices in the same address space. In this case,
connections between rtports in the same actor are simply implemented as a single
user thread which repeatedly calls the source handler with a particular buffer address
and then calls the sink handler with the same address. This single mechanism serves
to implement both the data transfer and the delivery notification aspects of the
communication. Connections between rtports in the same actor are often used in the
context of intra-actor pipelines. To minimise data copying in such pipelines, the
address of a single buffer is passed from stage to stage as the various stages of the
pipeline are executed. Finally, when the last pipeline stage in the actor has disposed
of the data, the buffer is released. If new data arrives at the actor while the previous
data is being passed along the pipeline, processing of this data proceeds concurrently
using a separate buffer. In this way, it is possible to efficiently implement arbitrarily
long intra-actor pipelines without incurring data copying overheads.

 Further optimisations are possible in communication between kernel and user
space. Chorus currently incurs (at best) one copy and one virtual memory remap for a
data transfer from the network driver to user space. We can reduce this to zero copies
and one virtual memory remap at best. Our strategy is to temporarily ‘loan’ (via a
virtual memory remap) network buffers to user actors when data arrives. Eventually,
of course, the network driver will need to reclaim its buffer but in many cases the user
will have processed and forwarded the data before this becomes necessary (otherwise
the user actor can choose to copy the data somewhere safe). We are currently working
on a driver-to-user protocol designed to effectively compromise between the network
driver’s need to always have available buffers while eliminating the need to copy in
the majority of cases.

Note that, by a simple extension, this scheme can also be applied to the case of
actor to actor communications on the same machine. The strategy here is to simply
pass the address of the re-mapped source buffer along with the event notification.

6 Example Revisited
To illustrate how the communications and scheduling subsystems work together, we
now return to the second example of section 4. This example involved a two stage
pipeline with its intermediate device in user space and its source and sink devices in
the kernels of separate machines.

On the source machine, the data and control flow pattern is as follows. First, data
is copied (or DMA transferred) by the first connection from the audio device to the
connector device’s user level buffer. This connection is purely local and is
implemented as a system thread as described above. Having performed the copy (or
supervised the DMA), the system thread delivers a software interrupt to the sink
actor’s user level scheduler. The scheduler, on receiving the interrupt, schedules a user
thread to execute the sink handler. When it runs (as determined by its deadline) the
user thread executes the user’s code and eventually blocks on a user level
synchronisation primitive. Execution of this primitive causes the user thread of the
second connection’s source rtport to unblock and a context switch to take place (this
thread will have been previously blocked in the source rtport’s handler waiting for
data). Note that this context switch involves no kernel overhead whatsoever
(assuming that no other actor has a globally earlier deadline); the original kernel
thread simply changes from executing the first user thread to the second. At this point
the user thread executing the source handler starts to run the transport protocol and
eventually issues a system call to the network device driver t ask it to copy data from
the connector’s buffer to the network card.

In total, the above processing on the source machine has cost two domain
crossings (for the system call), two kernel context switches and two copies (or one
copy and a DMA transfer). Note also that, if a pipeline had been involved, these costs
would have remained identical. If, however, the equivalent processing had been carried
out using conventional Chorus mechanisms, the expense would have been four
domain crossings (two for a ‘read’ operation and two for a ‘write’), a context switch
and four copies (two in optimal conditions). Furthermore, if a pipeline had been
involved, a standard Chorus implementation would have incurred considerable extra
overhead in terms of domain crossings, context switches and copies.

At the sink machine, data is received at the network interface card and the
protocol processing is performed by a system thread in kernel space before the buffer
is transferred to the sink device. The data does not need to cross into user address space
at the sink machine. Thus the cost incurred is zero domain crossings, one context
switch (to allow the user’s rthandler to run) and two copies (or one copy and a DMA).
Using standard Chorus mechanisms, the cost here would be same as at the source: i.e.
four domain crossings, a context switch and four copies.

7 Related Work
The split level scheduling scheme which has significantly influenced our design is
described in [6]. However, in Govindan’s scheme, there is no end-to-end QoS control
and, although threads are correctly scheduled once an application level message has
been received, the scheduling of protocol processing is controlled by a standard non
real-time policy. Our scheme integrates the scheduling of protocol and application
processing through the mechanisms of handlers and QoS controlled connections.

In Govindan’s scheme, real-time threads alternate between two states: workahead
(scheduled with a time sliced round robin policy) and critical (scheduled with an
earliest deadline first policy). There is also a class of non real-time interactive threads
which take precedence over real-time threads in the workahead state but not the critical
state. Users explicitly notify the system, in anticipation of message arrivals, the
times at which workahead threads should become critical. Our scheme, on the other
hand, does not require repeated user notification of critical times as the system has
prior knowledge of message arrival patterns from QoS statements supplied at connect

time. We are also able to manage with just two classes of thread: real-time threads
(scheduled earliest deadline first) and non real-time threads. The workahead/critical
distinction is not required because the deadlines of real-time threads are known at all
times. The computation performed in Govindan’s scheme by workahead and
interactive threads is, in our system, performed by non-real-time threads scheduled
according to the standard Chorus priority/ round robin schemes.

Govindan also describes a framework for inter-address-space communication
known as memory mapped streams (MMS). MMSs are integrated with the scheduling
system and work with a range of data transfer implementations such as copying,
shared memory or re-mapping. However, the abstraction is only applicable for intra-
machine communication. Our connection and connector abstractions perform a similar
role but are applicable to remote as well as local communications. Furthermore,
MMSs use a passive read/write based I/O interface which results in more thread
synchronisations than our handler approach.

Work on real-time extensions to Mach consisting of real-time threads, real-time
synchronisation primitives and time driven scheduling is described in [13]. These
extensions are intended for real-time computing in general rather than multimedia
support in particular. The thread model allows the creation of both periodic and
aperiodic threads. The scheduling mechanism is derived from the ARTS kernel [14]
and permits hard real-time scheduling based on classic techniques [5]. Again, for end-
to-end continuous media support, the main limitation of this work is the lack of
declarative QoS and integration with the communications sub-system. As an example
of the latter, the API provides means to create periodically executable threads, but
there is no way to associate this periodicity with the arrival of messages on a Mach
port. More recent work by the same group [15] in the ARTS kernel has addressed
QoS issues and continuous media but it is still not clear how scheduling and
communications interact.

8 Conclusions and Future Work
We have presented a low level API and implementation scheme for distributed
multimedia support in a Chorus based micro-kernel environment. As the basic
abstractions of Chorus are comparable to those of other current micro-kernels such as
Mach and Amoeba we expect that it should be possible to extend other micro-kernels
in a similar way.

At the present time, we have established an experimental infrastructure consisting
of two 80386 based PCs running Chorus. The PCs are equipped with VideoLogic
audio/ video/ JPEG compression boards. The machines also have Ethernet cards and
are connected by a dedicated Ethernet. Due to the bottleneck presented by the PC’s
ISA bus, Ethernet serves as an adequate MAC layer technology for our current
research which is focusing on end-system rather than network QoS. However, in the
future we intend to use 80486 machines with higher bandwidth EISA busses and
ATM interface cards. This will enable us to extend our investigation of QoS issues
and resource reservation to the network and work on an overall architecture for QoS.
Our plans for establishing an ATM based infrastructure and end-to-end QoS
architecture are detailed in [16].

We are currently working on the implementation of both the transport and
scheduling aspects of the design presented in this paper. The scheduling
implementation is based around the Chorus scheduling classes facility mentioned in
section 2. This provides an ideal implementation basis for our kernel level scheduler.

The user level scheduling and thread support aspects of the design are based on a
simple non-timesliced package which we are modifying to accept software interrupts
and a shared memory interface to the new kernel scheduling class. As mentioned
above, our transport implementation is based on a pre-existing protocol. We are
currently porting this to Chorus from the transputer based platform for which it was
initially designed.

There remain a number of important issues which we have not yet addressed. One
relates to the provision of an admission algorithm for flows. Another involves the
extension of connections and rtports to operate in the context of port groups as
supported by standard Chorus. This latter extension is non trivial due to the inherent
problems of connection oriented multicast [17]. A third issue is the provision of a
higher level distributed programming platform which we are currently investigating in
co-operation with researchers at CNET, France. The platform will be based on the
ISO’s emerging standards for Open Distributed Processing with extensions for real-
time synchronisation, continuous media and QoS [18].

A final issue we intend to address is the applicability of our extensions to
hardware architectures beyond the standard uni-processor bus-based systems we are
currently using. This is an important issue as it is well acknowledged that multimedia
workstations require additional hardware support and that bus-based interconnects do
not scale well [19]. The extension to a shared memory multiprocessor architecture
should be relatively straightforward. Chorus already incorporates multiprocessor
support and our user level threads package can also take advantage of this. To
investigate the applicability of our scheme to message passing multiprocessors, we
intend to port our system to a star configured switch-based multimedia workstation
currently being built at Lancaster. The intention here is to retain our programming
abstractions but to extend the low level implementation to accommodate non-local
devices realised as specialised media specific processing nodes connected via the
system switch.

Acknowledgement
The research reported in this paper was funded under UK Science and Educational
Research Council grant number GR/J16541. We would also like to thank our
colleagues at CNET, particularly Jean-Bernard Stefani, Francois Horn and Laurent
Hazard, for their close co-operation in this work.

References
1 . Coulson, G., and Blair, G.S., “Micro-kernel Support for Continuous Media in

Distributed Systems”, Internal Report No. MPG-93-04 Department of
Computing, Lancaster University, Lancaster LA1 4YR, UK., 1993.

2 . Herrmann, F., Armand, F., Rozier, M., Gien, M., Abrossimov, V., Boule, I.,
Guillemont, M., Leonard, P., Langlois, S. and W. Neuhauser, “CHORUS, A
New Technology for Building UNIX Systems”, Proc. EUUG Autumn
Conference, Cascais, Portugal, pp 1-18, October 3-7 1988.

3 . Accetta, M., Baron, R., Golub, D., Rashid, R., Tevanian, A., and M. Young,
“Mach: A New Kernel Foundation for UNIX Development”, Technical Report
Department of Computer Science, Carnegie Mellon University, August 1986.

4 . Tanenbaum, A.S., van Renesse, R., van Staveren, H. and S.J. Mullender, “A
Retrospective and Evaluation of the Amoeba Distributed Operating System”,
Technical Report, Vrije Universiteit, CWI, Amsterdam, 1988.

5. Liu, C.L. and Layland, J.W., “Scheduling Algorithms for Multiprogramming
in a Hard Real-time Environment”, Journal of the Association for Computing
Machinery, pp 46-61, February 1973.

6 . Govindan, R., and D.P. Anderson, “Scheduling and IPC Mechanisms for
Continuous Media”, Thirteenth ACM Symposium on Operating Systems
Principles, Asilomar Conference Center, Pacific Grove, California, USA,
SIGOPS, Vol 25, pp 68-80, 1991.

7. Marsh, B.D., Scott, M.L., LeBlanc, T.J. and Markatos, E.P., "First class
user-level threads", Proc. Symposium on Operating Systems Principles
(SOSP), Asilomar Conference Center, ACM, pp 110-121, October 1991.

8 . Shepherd, W.D., Coulson, G., García, F., and D. Hutchison, “Protocol
Support for Distributed Multimedia Applications”, Proc. Second International
Workshop on Network and Operating Systems Support for Digital Audio and
Video, Heidelberg, Germany, 1991.

9 . Clark, D.D., Lambert, M.L., and L. Zhang, "NETBLT: A High Throughput
Transport Protocol", Computer Communication Review, Vol 17, No 5, pp
353-359, 1987.

10. Tennenhouse, D.L., "Layered Multiplexing Considered Harmful", Protocols
for High-Speed Networks, Elsevier Science Publishers (North-Holland), 1990.

11. Forin, A., Golub, D. and Bershad, B., "An I/O System for Mach 3.0", Internal
Report, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA
15213, USA, 1990.

1 2 . Anderson, T.E., Bershad, B.N., Lazowska, E.D. and H.M. Levy, "Scheduler
Activations: Effective Kernel Support for the User-level Management of
Parallelism", Proc. Thirteenth ACM Symposium on Operating Systems
Principles, Asilomar Conference Center, Pacific Grove, CA, USA, pp 95-109,
October 1991.

13. Tokuda, H., Nakajima, T. and Rao, P., "Real-time Mach: Towards a
Predictable Real-time System", Proc. Usenix 1990 Mach Workshop, Usenix,
October 1990.

14. Tokuda, H. and Mercer, C.W., “ARTS: A Distributed Real-time Kernel”,
ACM Operating Systems Review, Vol 23, No 3, July 1989.

15. Tokuda, H., Tobe, Y., Chou, S.T.C. and Moura, J.M.F., "Continuous Media
Communication with Dynamic QOS Control Using ARTS with an FDDI
Network", ACM Computer Communications Review, 1992.

16. Campbell, A., Coulson, G., García, F., Hutchison, D., and H. Leopold,
“Integrated Quality of Service for Multimedia Communications”, Proc. IEEE
Infocom’93, also available as MPG-92-34, Computing Department, Lancaster
University, Lancaster LA1 4YR, UK, August 1992.

17. Cramer, A., Farber, M., McKellar, B. and Steinmetz, R., "Experiences with
the Heidelberg Multimedia Communication System: Multicast, Rate
Enforcement and Performance", Proc. IFIP Conference on High Speed
Networks, Liege, Belgium, 1992.

1 8 . Coulson, G., Blair, G.S., Davies, N. and N. Williams, “Extensions to ANSA
for Multimedia Computing”, Computer Networks and ISDN Systems, 25, pp
305-323, 1992.

19. Scott, A.C., Shepherd, W.D. and Lunn, A.S., "The LANC - Bringing ATM
to the workstation", 4th IEE Conference on Telecommunications 1993
(ICT'93), Manchester, April 1993.

