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Dietary intervention impact on gut microbial
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Complex gene–environment interactions are considered important
in the development of obesity1. The composition of the gut micro-
biota can determine the efficacy of energy harvest from food2–4 and
changes in dietary composition have been associated with changes
in the composition of gut microbial populations5,6. The capacity to
explore microbiota composition was markedly improved by the
development of metagenomic approaches7,8, which have already
allowed production of the first human gut microbial gene catalogue9

and stratifying individuals by their gut genomic profile into diffe-
rent enterotypes10, but the analyses were carried out mainly in non-
intervention settings. To investigate the temporal relationships
between food intake, gut microbiota and metabolic and inflamma-
tory phenotypes, we conducted diet-induced weight-loss and weight-
stabilization interventions in a study sample of 38 obese and
11 overweight individuals. Here we report that individuals with
reduced microbial gene richness (40%) present more pronounced
dys-metabolism and low-grade inflammation, as observed concomi-
tantly in the accompanying paper11. Dietary intervention improves
low gene richness and clinical phenotypes, but seems to be less
efficient for inflammation variables in individuals with lower gene
richness. Low gene richness may therefore have predictive potential
for the efficacy of intervention.

To examine relationships between variations in gut microbiota com-
position and bioclinical parameters after dietary intervention, we used
the approach termed quantitative metagenomics11. Forty-nine obese or
overweight subjects were recruited and subjected to a 6-week energy-
restricted high-protein diet followed by a 6-week weight-maintenance
diet (Methods); the compliance was good, as indicated by a principal
component analysis (PCA) of 35 nutrients over time (Supplementary
Fig. 1). Bioclinical characteristics and detailed qualitative and quant-
itative features of individuals’ food intake were obtained at baseline, 6
and 12 weeks (Supplementary Tables 1 and 2). The 35% decrease in
energy intake after the first 6 weeks was associated with a reduction in
body-fat mass, adipocyte diameter and improvements in insulin sensi-
tivity and markers of metabolism and inflammation (Supplementary
Tables 1 and 3). During the weight-maintenance phase, intake of
nutrients tended to return to baseline values, whereas dietary total
energy, carbohydrate and lipid intake remained lower than at begin-
ning of the intervention (Supplementary Tables 2 and 3). Serum lipid
variables also tended to return to their basal levels as well, while a pro-
gressive reduction occurred in systemic inflammation markers.

We first examined the gut microbial composition of the study popu-
lation at baseline (Methods). A bimodal distribution of bacterial gene
number was observed (Fig. 1a), similar to the one found in a cohort of
292 Danish individuals11, albeit less distinct, possibly owing to a lower

cohort size. At a threshold of 480,000 genes, corresponding to that
from the accompanying manuscript11, there were 18 (40%) low gene
count (LGC) and 27 (60%) high gene count (HGC) individuals, har-
bouring on average 379,436 and 561,499 genes respectively, a one-
third difference. A difference in diversity between lean and obese
individuals was reported previously12, but the difference among the
obese was not described.

We then examined the baseline phenotypes of the study population.
The LGC group had significantly higher insulin resistance and fasting
serum triglyceride levels, as well as a tendency towards higher LDL cho-
lesterol and inflammation than the HGC group (Fig. 2); as observed in
the accompanying paper11. Analysing gene richness as a quantitative
variable gave similar results (Supplementary Table 4). We conclude that
in two European countries, the individuals of the LGC group present
phenotypes that expose them to an increased risk of obesity-associated
co-morbidities. Antibiotic treatments, which lower the diversity, have
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Figure 1 | Gut microbial composition of LGC (n 5 18) and HGC (n 5 27)
subjects. a, Baseline gene count. b, Presence and frequency of 25 tracer genes
for species differentially abundant in LGC and HGC groups; Mann–Whitney
probability (q, false discovery rate (FDR) adjusted) is given. Genes are in rows,
frequency is indicated by colour gradient (white, not detected; red, most
abundant); individuals, ordered by increasing gene number, are in columns.
c, Highest AUC values for a combination of a given number of species in a ROC
analysis of 45 individuals of our cohort (red) and 292 individuals of the Danish
cohort11. Inset, AUC for the combination of six species.
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been reported to improve the hormonal, metabolic and inflammatory
status of obese mice; this apparent contradiction may be due to a res-
toration of a balance of the pro-inflammatory and inflammatory bac-
terial species in mice. Interestingly, LGC subjects seemed to consume
less fruits and vegetables and less fishery products than HGC subjects
(Supplementary Tables 4–6), raising the possibility that long-term
dietary habits may affect gene richness and the associated phenotypes,
as suggested for the elderly13.

We next searched for bacterial species differentially abundant in the
LGC and the HGC groups. To this aim, we first identified the genes
that had significantly different frequencies in the LGC and HGC
groups and then clustered the genes supposedly from the same species
by a frequency-based covariance analysis (Methods). We identified
6,230 genes that were different according to a Mann–Whitney test
(P , 0.0001); 4,462 (72%) were grouped into 112 clusters containing
at least 2 genes with a Spearman correlation coefficient r . 0.85. A vast
majority of these genes (3,966; 89%) were found in only 18 clusters,
which originate from species differentially abundant in the LGC and
HGC groups (Supplementary Table 7). The relative abundance of the
18 clusters in each individual was computed as a mean frequency of the
25 tracer genes for each cluster; all were significantly more abundant
among the HGC individuals (Fig. 1b and Supplementary Table 8).

To test whether the LGC and HGC individuals could be distingui-
shed using the 18 species represented by the tracer genes, we carried
out an exhaustive receiver operating characteristic (ROC) analysis of
all clusters combinations, with tenfold cross validation, using 90% of
individuals for computation and the remaining 10% for test (Methods).
The best area under the curve (AUC) values for combination of differ-
ent numbers of species are shown in Fig. 1c; they ranged between 0.96
and 0.99 for 2 to 9 species combinations, indicating an almost perfect
stratification of LGC and HGC individuals. Interestingly, 14 of the 18
species represented by the tracer genes (78%) were also identified as
differentially abundant among the LGC and HGC individuals in a
larger Danish cohort11. Not surprisingly, the combinations yielding

the best AUC values for our cohort also efficiently stratified LGC
and HGC Danes (Fig. 1c). This indicates that the LGC and HGC
individuals from two European countries differ in a similar way, not
only by their clinical phenotypes but also by specific features of their
gut microbiota.

Very interestingly, gene richness increased significantly in the LGC
group after the energy-restricted diet and remained after the stabiliza-
tion phase higher than at baseline even though a slight downwards
trend was apparent, whereas it did not change significantly during inter-
vention in the HGC group (Fig. 3a). We conclude that a dietary inter-
vention can correct a putative loss of richness in the LGC group, albeit
partially, as the difference between the LGC and HGC groups remained
significant at the end of the intervention.

To investigate the potential effect of the increase in gene richness on
patient status we analysed association of the changes of richness and of
bioclinical variables. Increase of gene richness was associated with a
significant decrease in adiposity measures (hip circumference and total
fat mass) and circulating cholesterol as well as a trend towards a decrease
in inflammation (highly sensitive C-reactive protein) (Supplementary
Table 9). These results suggest that the correction of a putative loss of
microbial richness is associated with an improvement of the systemic
metabolic status. However, although the inflammation was decreased
in all individuals, the difference between LGC and HGC individuals
was not attenuated (Fig. 2). Low basal gene richness was also associated
with increased adipose tissue inflammatory cells at 6 weeks and increased
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Figure 3 | Gene richness of LGC and HGC groups during the intervention.
Data are mean 6 s.e.m. Black line, HGC (n 5 27); grey line, LGC (n 5 18).
Differences between HGC and LGC groups were tested using Mann–Whitney
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baseline and modulated by the dietary intervention.
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systemic inflammation at 12 weeks (Supplementary Table 4). Further-
more, higher gene richness at baseline was associated with a more mar-
ked improvement of adipose tissue and systemic inflammation (delta
changes at 6 and 12 weeks, respectively; Supplementary Table 10). Gene
richness may therefore help to predict the efficacy of dietary interven-
tion on inflammatory variables in overweight or obese individuals.

To further explore the effects of dietary intervention on gut micro-
bial species we used a gene clustering procedure similar to the one des-
cribed above for the comparison of LGC and HGC individuals. A set of
213,532 genes that varied significantly in frequency between different
time points (Wilcoxon signed-rank test, P , 0.05) was first identified.
To reduce the complexity of the data set, an entropy-filtering criterion
was then applied, removing the genes present in only a few individuals
(Supplementary Fig. 2). The remaining 58,109 genes were clustered by
frequency covariance (Methods and Supplementary Fig. 3). Some
34,920 genes (60%) were grouped in 39 clusters larger than 100 genes
(Supplementary Table 11); a large majority, 72%, were very compact,
with a clustering coefficient .0.75 (ref. 14) (Supplementary Informa-
tion, see cluster sheets for a more detailed description). Of the 39
clusters, 17 had $80% of their genes assigned to the same species and
19 to the same genus (the global distribution was 64% Firmicutes, 33%
Bacteroidetes, and 3% Actinobacteria; Supplementary Table 11), con-
firming a species-specific clustering (Methods).

The abundance of the potential species represented by the 39 clus-
ters was computed as the sum of the respective gene frequencies, and
variations over time and correlations with bioclinical variables and food
items were examined (Methods and Supplementary Tables 12 and 13).
We observed that the abundance of 26 clusters varied significantly with
time, indicating that a number of bacterial species can be modulated by
nutritional intervention; the remaining 13 were not studied further. Only
a few of our gene clusters decreased or showed a tendency to decrease
during the calorie restriction phase, but one of those was assigned to
Eubacterium rectale and another one to Bifidobacterium spp., in accord-
ance with previous results6 (Supplementary Table 11 and Supplementary
Information).

The main trend after 6 weeks of energy-restricted diet was a signifi-
cant increase of abundance of most gene clusters (n 5 15), whereas the
trend was opposite after 6 weeks of weight-maintenance diet, as the
abundance of 14 species decreased. A total of five different patterns was
observed, reflecting combinations of variation during the two periods
(Supplementary Table 11), but the overall tendency was to return close
to a baseline level by the end of the weight-maintenance phase (illu-
strated in Supplementary Informatino), suggesting a transient effect of
dietary intervention on gut microbiota, as described previously15. Interes-
tingly, for 8 of the 26 gene clusters that had a significantly lower abund-
ance in the LGC than HGC individuals at baseline (Supplementary
Table 14), the energy-restricted diet led to an increase of abundance in
the LGC individuals, bringing them close to the level found in the HGC
individuals (Fig. 3b); there was no significant abundance difference
between the LGC and HGC individuals upon the stabilization phase.
We conclude that the dietary intervention, in spite of its overall transient
effect, may lead to more persistent changes of some gut microbial species.

Quantitative metagenomics analysis of the gut microbiome in 3 diffe-
rent samples for each of the 49 French (our study) and in 292 Danish
subjects11 revealed the existence of a high proportion of individuals
(23–40%) with low microbial richness. In both study populations, a
detailed clinical analysis indicated that these individuals show adipo-
sity associated dyslipidaemia, higher insulin resistance and low-grade
inflammation when compared to their higher-gene-diversity counter-
parts. This deleterious phenotype is known to be associated with increa-
sed risk of pre-diabetes, type 2 diabetes, hepatic and cardiovascular
disorders as well as some forms of cancer16–18. In both study popula-
tions, abundance of many gut bacterial species in low-richness indivi-
duals was altered in a similar way relative to high richness individuals;
this alteration can be accurately detected by combinations of only a few
bacterial species. This indicates that simple diagnostic tests, based on

our ‘other genome’ could be developed to identify individuals at a
higher risk of obesity-associated co-morbidities. In the context of the
current global epidemics of obesity and metabolic disorders, such tests
could have a broad usefulness.

The concomitant improvement of gut microbial gene richness and
bioclinical variables in LGC individuals by a dietary intervention sug-
gests a possibility to advance from risk detection to risk alleviation,
under the assumption that the less rich microbiota are also less healthy
(see the accompanying paper11). Restoration of gene richness was not
achieved fully by our short-term intervention, but seems to be a desir-
able goal, as decreased gene richness was found to be associated with a
less efficient improvement of the inflammatory variables by dietary
intervention. Interestingly, increased consumption of fruits and vegeta-
ble and thus higher fibre consumption before the intervention seemed
to be associated with high bacterial richness. This finding, although
exploratory in nature and requiring replication, supports a recently
reported link between long-term dietary habits and the structure of
gut microbiota15 and suggests that a permanent change of microbiota
may be achieved by appropriate diet. Development of a two-pronged
approach, coupling early detection of an impending loss of gut bacterial
richness to appropriate nutritional recommendations, which is yet to
be established, may help to reach this goal and possibly contribute to
diminish the risk of the obesity-linked co-morbidities; stratification by
gene richness may have predictive value in respect to the efficacy of a
dietary treatment and even guide its choice. However, low-grade
inflammation, an important trait related to obesity but also common
to many chronic diseases, seemed relatively refractory to dietary inter-
vention in the LGC individuals, suggesting that specific therapeutic
actions, aiming at restoring gut microbiota richness and equilibrium
in obesity and altered metabolism, may need to be developed as well.

METHODS SUMMARY
Forty-nine obese or overweight subjects were recruited and subjected to a 6-week
energy-restricted high-protein diet followed by a 6-week weight-maintenance diet.
Bioclinical characteristics, physical activity scores and detailed qualitative and quan-
titative features of their food intake were obtained at baseline, 6 and 12 weeks
(Methods). The clinical trial was registered at http://www.ClinicalTrials.gov under
study number NCT01314690. The Ethical Committee of Hôtel Dieu Hos-
pital approved the clinical study and all subjects provided written informed con-
sent. Faecal samples were collected at each time point and analysed with the next
generation sequencing SOLiD System. After read mapping a frequency table of
microbial genes was obtained (Methods).

Two groups of patients with LGC and HGC were defined using the gene-richness
distribution. Differences in terms of food, bioclinical variables and gene abundance
were identified by standard statistical methods (Methods). Focusing on the dietary
intervention and using a multi-criteria selection to narrow down the number of
genes to a few thousands, gene clusters of co-varying microbial genes were con-
structed. These resulting gene clusters were then analysed for changes over time
and correlations with bioclinical markers (Methods).

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Clinical investigation. Obese (n 5 38) and overweight (n 5 11) subjects, 8 men
and 41 women, were recruited for a 12-week controlled dietary intervention at the
Center of Research in Human Nutrition, Pitié-Salpêtrière Hospital, Paris, France.
The subjects included in the study had no chronic pathologies except excess body
weight. Their body weight was stable within 3 months before the study. None of the
participants was undergoing chronic treatment or had been involved in weight-
loss programs in the preceding 12 months. No antibiotics or drugs were taken
within 2 months before or during the course of the study. The Ethical Committee
of Hôtel Dieu Hospital approved the clinical study and subjects provided written
informed consent. In the first 6-week phase, subjects consumed an energy-restricted
high-protein diet (1,200 kilocalories (kcal) per day for women and 1,500 kcal for
men: 35% proteins, 25% lipids, 44% carbohydrates) with low glycaemic index
carbohydrates and enrichment with soluble fibres19. This phase was followed by
a second 6-week body weight stabilization period with 20% increase in total energy
intake, above their resting energy metabolic rate. At 0, 6 and 12 weeks, blood and
faecal samples were collected and anthropometric measurements were performed.
Subjects filled a 7-day dietary record and were interviewed by a registered dietician.
On the visit day, the dietician checked the information and clarified any ambiguit-
ies regarding detail of food consumed. All records were analysed by the registered
dietician using the computer software program PROFILE DOSSIER V3 (Audit
Conseil en Informatique Médicale), which has a dietary database initially made up
of 400 food items representative of the French diet as described previously20. A
nutrient analysis was generated for each subject. Body composition was determined
by dual-energy X-ray absorptiometry (DEXA). Blood samples were obtained after
12 h of fasting to measure total cholesterol, high-density lipoprotein (HDL) cho-
lesterol, triglycerides, insulin, glucose, and inflammatory markers (hsCRP and
interleukin 6 (IL-6)) as described previously21. Insulin resistance was estimated
using HOMA-IR and Disse index scores22,23. Subcutaneous abdominal adipose
tissue samples were obtained at all time points by needle biopsy from the perium-
bilical area under local anaesthesia (1% xylocaine) to measure the adipocytes
diameter24 and for immunohistochemical studies (HAM561-stained macrophages
in adipose tissue). Whole faecal samples were self-collected in sterile boxes and
stored at 220 uC within 4 h, sampled (200-mg aliquots) and then stored at
280uC until analysis. Paired Wilcoxon tests were performed to analyse changes
in these variables between various time points (P , 0.05). P values were adjusted
for multiple testing using the Benjamini–Hochberg procedure25.
Metagenomic sequencing. Intestinal bacterial gene content of 49 obese and over-
weight individuals at 3 time-points (baseline, week 6 and week 12) was determined
by high-throughput ABI SOLiD sequencing technology of total faecal DNA. An
average of 76.5 million 6 36.5 million (mean 6 s.d.) 35-base-long single reads
were determined for each sample (a total of 393 Gb of sequence) (Supplementary
Table 15). By using corona_lite (v4.0r2.0), an average of 24.8 million 6 14.3 million
reads per individual were mapped on the reference catalogue of 3.3 million genes9

with a maximum of 3 mismatches. Reads mapping at multiple positions were dis-
carded and an average of 14.2 million 6 8.1 million uniquely mapped reads per indi-
viduals were retained for estimating the abundance of each reference gene by using
METEOR26 software. Abundance of each gene in an individual was normalized
with METEOR by dividing the number of reads that uniquely mapped to a gene by
its nucleotide length. After that, normalized gene abundances were transformed in
frequencies by dividing them with the total number of uniquely mapped reads for a
given sample. The resulting set of gene frequencies, termed as a microbial gene
profile of an individual, was used for further analyses.
Comparison between SOLiD and Illumina sequencing technologies. Two pri-
mary short-read technologies currently exist for quantitative metagenomic analysis;
SOLiD and Illumina. To validate data set correspondences and comparisons between
results in this study and the accompanying paper11, 24 samples from the Danish
Inter99 cohort, previously sequenced on an Illumina GA platform, were also sequen-
ced and analysed by SOLiD technology. Representative samples for cross-comparison
included 14 females and 10 males, 15 obese and 9 lean, and 15 HGC and 9 LGC
individuals. Hierarchical clustering demonstrated all samples self-clustered as
technology-independent pairs, with the average Pearson correlation coefficient of
0.87 (computed upon log transformation) between the two technologies and increa-
sing concordance associated with increased signal (Supplementary Fig. 4).
Gene-richness analysis. Gene richness was compared between subjects using the
same number of mapped reads. Data were downsized to adjust for technical vari-
ability linked to different sequencing depths. This downsizing was performed at
different levels by randomly selecting 4.5 or 7 million mapped reads for each
sample and then computing the mean number of genes over 30 drawings (Sup-
plementary Table 15). The 4.5-million-read downsizing allows keeping more than
90% of the individuals at each time point (required for the quantitative analysis of
gene richness), but shrinks the data distribution (Supplementary Fig. 5). The
7-million-read downsizing was used for the analysis of the gene count distribution

among the individuals and the enterotypes. The distribution of gene number
obtained with the two downsizings is quite similar as shown by Spearman cor-
relation (r . 0.99) (Supplementary Fig. 5).
Differentially abundant gene clusters between LGC and HGC. Two groups of
patients with LGC and HGC were defined using the 480,000-gene threshold,
consistent with the accompanying manuscript11 (Fig. 1a, and main text). Genes
significantly different in groups of individuals were identified by Mann–Whitney
tests using a P-value threshold of ,0.0001. They were clustered by an abundance-
based binning strategy, using the covariance of their gene frequency profiles
among the individuals of the cohort, as described in the accompanying paper11.
Abundance of a given cluster in each individual was estimated as a mean abund-
ance of 25 arbitrarily selected ‘tracer’ genes for each cluster; these values were close
to those obtained by using all the genes of a cluster.
ROC analysis. The analyses were carried out to distinguish between HGC and
LGC individuals by a combination of gene clusters. For each combination, only a
single decision model was considered, computed as the sum of mean abundance of
clusters with greater abundance in HGC than in LGC minus the sum of those with
greater abundance in LGC than in HGC. As opposed to the infinite number of
regression models, such models are finite and can be exhaustively explored. To
select the best models, we used the cross-validated area under the ROC curve cross-
validated AUC criterion27 well adapted to classification models for binary outcome
data.
Correlations between microbial gene clusters and clinical variables. Mann–
Whitney tests were used to compare bioclinical variables, food items and gene
clusters between LGC and HGC groups at each time point. Associations between
quantitative basal gene richness and bioclinical or food variables, or differences
(deltas) in bioclinical or food variables were investigated using linear models. For
the associations between deltas of bioclinical parameters and deltas of gene richness,
all pairs of deltas were computed (6 weeks–0 weeks, 12 weeks–6 weeks, 12 weeks–
0 weeks). Linear mixed models were then fitted using all data. A P-value threshold of
0.05 was applied for statistical significance. Owing to the highly correlated biocli-
nical and food variables, adjustment for multiple testing is not really adequate, but
the false discovery rates (Benjamini–Hochberg25) are given for information pur-
poses in Supplementary Table 9.
Taxonomical annotation. The genes from clusters were mapped by BLASTN
(BLAST 2.2.24, default parameters) against a collection of 6,006 genomes (the
available reference genomes from NCBI and the set of draft gastrointestinal gen-
omes from the DACC and MetaHIT as of the 03.08.2012). Following taxonomical
assignation parameters described by Arumugam10, each gene was assigned with
the taxonomy of the best-hit covering $80% of the gene length and according to
the identity threshold for the taxonomic rank ($65% for phylum, $ 85% for genus
and $ 90% for species). To assess the taxonomy of clusters below these thresholds
we used BLASTP against the non-redundant sequences databases available at
NCBI. Based on the criterion of the homogeneity of the best hit taxonomic assign-
ment (at least 80% of tracer genes from a cluster having the same taxonomic best
hit assignment), 100% and 25% of the clusters could be assigned at a phylum and
genus level, respectively (Supplementary Table 7).
Gene clusters affected by the dietary intervention. The analysis was carried out
with genes with a potentially dietary linked signal. The first filtering step consisted
in selecting the genes whose frequency was modulated significantly by the nutri-
tional intervention during the dietary restriction or the stabilization period with a
Wilcoxon signed-rank test (P , 0.05). A subset of these genes, with high Shannon
entropy28, was selected in a second filtering step. The entropy distribution of the
filtered genes presented a bimodal distribution and the genes corresponding to the
highest mode were selected using a threshold estimation on an approximation of
its density function29 (Supplementary Fig. 2). The genes with high entropy were
mostly shared among individuals of the cohort. Genes with significantly similar
frequency profiles (P divided by number of tests , 0.05) and high Spearman
correlation coefficient (r . 0.85), were clustered in a way similar to the LGC–
HGC clusters using single-linkage clustering (Supplementary Fig. 3). The 39
clusters with a size superior to 100 genes were kept for further analyses. The group
abundance of each cluster was computed as the sum of the frequencies of its genes,
and the data were log-transformed for parametric statistics.
Gene-cluster analysis. Gene clusters were analysed for changes over time and cor-
relations with bioclinical markers using linear mixed models were adjusted for age
and sex (Supplementary Tables 12 and 13). The highly correlated data induced
P values distributions not adapted to standard procedures for multiple testing adjust-
ments; nevertheless, we provide the false discovery rates using the Benjamini–
Hochberg method in Supplementary Tables 12 and 14. All statistical analyses were
performed using the R environment30.
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